
An Explainable Machine Learning
Methodology For Detecting Novel

Network Attacks

Final Project Report

Author: Caroline Smith

Supervisor: Fabio Pierazzi

Student ID: 21068512

April 12, 2024

Abstract

Network attacks are a persistent issue worldwide, and as attackers and their intrusion tech-

niques continue to evolve, security professionals must constantly adapt to new attacks while

reviewing a huge amount of network traffic. Machine learning-based detection systems can

automate the process of flagging these attacks, allowing security professionals to spend less

time detecting network attacks and more time preventing and mitigating them. However, as

most high-performance machine learning models for detecting network attacks are black boxes,

it is often unknown how a model classifies a particular traffic flow as malicious or benign.

Explanations for a model’s prediction of a particular traffic flow, i.e. local explanations, can

improve the usefulness of an intrusion detection model since they can supply clear reasoning

for the prediction and a ‘next step’ for the security professional. Explainable models could

also provide insight on the intrusion vector and techniques of a novel attack approach. This

research proposes PABLO, a state-of-the-art methodology which utilises an efficient, game the-

oretic approach to detect and explain network attacks, and investigates an implementation of

PABLO, PyPABLO, which uses a Random Forest classifier, PySpark, and the SHAP software

library to detect and explain network attacks. This research will evaluate the ability of Py-

PABLO to detect and explain novel network attacks such as port scan, brute force, and Patator

attacks. It is imperative to explore the explainability of machine learning-based network in-

trusion detection systems, as these systems will not be useful nor commercially viable until

they can provide effective reasoning behind their classification decisions. Locally explainable

learning-based detection systems are therefore crucial for defeating real-world attackers.

Originality Avowal

I verify that I am the sole author of this report, except where explicitly stated to the contrary.

I grant the right to King’s College London to make paper and electronic copies of the

submitted work for purposes of marking, plagiarism detection and archival, and to upload a

copy of the work to Turnitin or another trusted plagiarism detection service. I confirm this

report does not exceed 25,000 words.

Caroline Smith

April 12, 2024

Acknowledgements

I would firstly like to thank Dr Fabio Pierazzi for his invaluable guidance as a

lecturer and supervisor. He has made a larger impact on my future than he knows.

I would also like to thank Victoria Gellner, Liam Castelli, and the SKFC for their

support.

Contents

1 Introduction 2

2 Background 5
2.1 Trends and Pitfalls of Machine Learning-based Network Intrusion Detection Sys-

tems . 6
2.2 Evaluating Models via Shapley Value Explainability 12

3 Design & Specification 18
3.1 Baseline Experiments . 18
3.2 Custom Attack Split Experiments . 20

4 Implementation 24
4.1 Experiment Setup . 24
4.2 Package Implementation . 26
4.3 Notable Challenges and Aspects . 40

5 Results & Evaluation 42
5.1 Experiment Settings . 42
5.2 Baseline Experiments . 42
5.3 Novel Port Scan and Brute Force Attack Detection Experiments 46
5.4 Overview of Results . 49

6 Legal, Social, Ethical & Professional Issues 54
6.1 Legal Issues . 54
6.2 Ethical and Social Issues . 54
6.3 Professional Issues . 55
6.4 British Computing Society Code of Conduct . 55

7 Conclusion & Future Work 56
Bibliography . 61

1

Chapter 1

Introduction

Network security has never been more important. The “Digital 2024: Global Overview Re-

port” dataset suggests that there are approximately 5.35 billion individuals using the Internet,

an increase of 1.8% from 2023 [23]. As the World Wide Web and its commercial uses become

ever-more commonplace, cyber assaults by both state-backed and independent actors, to gain

information from or immobilise governments, corporations and individuals, have become dis-

turbingly common. Businesses in many sectors must contend with huge numbers of assault

attempts on their networks, with China-nexus malicious actors targeting “nearly all 39 global

industry sectors” in 2023 [5].

There is clear benefit to be gained from utilising machine learning to detect network intru-

sion attempts, including a potentially faster response time to intrusion incidents and a decrease

in workload for system operators [35]. However, as explored by Sommer and Paxson in “Out-

side The Closed World: On Using Machine Learning for Network Intrusion Detection”, there

are many fundamental obstacles to implementing successful and commercially viable machine-

learning models for network intrusion detection, including high cost of errors, inability to cor-

rectly evaluate models due to a lack of high-quality data, and semantic gap [35]. In particular,

research into machine learning-based anomaly detection is biassed towards judging a model

on its ability to detect anomalies, and against a step which is arguably just as commercially

important for an intrusion detection model– determining what the detection of said anomalies

mean for an operator, and what the operator should do next in order to secure their network

[35].

This research proposes PABLO (Port-scan And Brute-force Learner Of anomalies), a state-

of-the-art methodology which utilises a game theoretic approach [30, 31] to detect and explain

2

network attacks. Furthermore, this research will investigate an implementation of PABLO,

PyPABLO, a Random Forest model trained on a modified version of the CICIDS2017 dataset

[7] and explained by the SHAP software library [20]. In particular, PyPABLO will be evaluated

on its ability to detect and explain particular ’novel’ network attacks. SHAP will specifically

be utilised to provide operator-friendly local explanations and data visualisations when testing

PyPABLO on data containing ‘novel’ port scan and Patator [17] attacks, simulating the event

of a novel attack technique on a network. This paper introduces the novel methodology of

utilising SHAP visualisations of local explanations to explain a model’s predictions on ’novel’

attacks.

A few main ideas will be considered when designing a prototype classification model for

anomaly-based intrusion detection. Firstly, a comparison must be drawn between the chosen

classifier’s ‘performance’ versus its ability to supply accurate and useful local explanations.

Secondly, a suitable evaluation must be completed regarding the model’s biases, limitations

and pitfalls. In this research, the ability of the anomaly detection model to detect ‘novel’

attacks is also considered during the design process.

This paper highlights the difficulties of designing machine learning models that are capable

of detecting novel attacks, and additionally expands upon the benefits of SHAP values for

providing local explanations for network intrusion detection models via SHAP-generated plots.

The objectives of this project are defined as follows:

• Evaluate the quality of the CICIDS2017 and ‘improved’ CICIDS2017 datasets by Sharafaldin,

et al. and Engelen, et al [7, 32]. This will be done by exploring the limitations and pit-

falls of models and their datasets, as set forth by Sommer and Paxson in “Outside The

Closed World”, Engelen et al. in “Troubleshooting an Intrusion Detection Dataset: the

CICIDS2017 Case Study”, and Arp et al. in “Dos and Don’ts of Machine Learning in

Computer Security” [4, 7, 35].

• Design an approach for a prototype machine learning-based intrusion detection model

trained on the ‘improved’ CICIDS2017 dataset by Engelen, et al. to specifically detect

novel port scan and brute-force attacks [7].

• Evaluate the ability of the prototype model to detect and explain novel port scan and

brute forcing attacks by utilising local explanations and other performance metrics.

• Utilise SHAP to provide insights on how a model makes classification decisions, and thus

improve the explainability and usefulness of the model.

3

Relevant work regarding the intersection between SHAP and intrusion detection is relatively

new [38]. The first paper to consider SHAP in the context of explainable intrusion detection was

published in 2020 and analyses its capabilities to provide local and global explanations for both

one-vs-all and multiclass classifiers [38]. However, Wang, et al. only evaluate the capabilities

of SHAP on one dataset, NSL-KDD, which is outdated and over-used in the learning-based

detection community [35, 38]. The authors Keshk, et al. propose the SPIP framework, which is

partially dependent on SHAP, but focuses heavily on explainability for end users of IoT devices

rather than SHAP’s ability to explain novel attacks for security professionals [16]. Authors

Wang et al. focus on the use of SHAP to explain the outputs of their tree-based or convolutional

neural network models via the original CICIDS2017 dataset, but suffer from pitfalls such as

spurious correlations and sampling bias [4, 39]. Existing work often focuses on the use of SHAP

to evaluate the performance of different classifiers, explain black box models (those which do

not have inherent explainability, such as deep learning-based models), or analyse local and

global explanations of non-‘novel’ attacks [9, 14, 26, 38]. In contrast, this research will focus

on the ability of a Random Forest classifier to detect malicious traffic for attacks it has not

been trained on, specifically port scanning and Patator brute forcing, and additionally on how

SHAP can be leveraged to explain individual classification decisions of a model for these ‘novel’

attacks.

The remainder of this paper is structured as follows: Chapter 2 (Background) provides

relevant background data on machine learning in the intrusion detection domain and software

frameworks related to local explainability. Chapter 3 (Design & Specification) outlines the

experiments and design for the PyPABLO model prototype, and Chapter 4 (Implementation)

delves into the concrete implementation of all experiments. Chapter 5 (Results & Evalua-

tion) presents and discusses the experiment results and SHAP data visualisations. Chapter

6 discusses the legal, social, ethical and professional issues that could be influenced by this

research. Finally, Chapter 7 presents key insights from this project and potential threads for

future research.

4

Chapter 2

Background

As stated in Chapter 1, two main objectives of this research are to develop a new methodology

for detecting ‘novel’ network attacks and to leverage the SHAP library to create understandable

and useful local explanations for a cybersecurity professional. The first question to be explored

in this literature review was:

1. What are the recent trends for machine learning-based intrusion detection models, and

what are their pitfalls, limitations and commercial challenges?

Once the issue of explainability and semantic gap was determined as a viable area for

novel research, the second question to be explored was:

2. What are the recent trends for introducing explainability into machine learning-based

network intrusion detection models, and how can explainable AI be used to mitigate

pitfalls in machine learning-based intrusion detection models?

This chapter will first examine relevant factors for the perceived and actual performance

of PyPABLO, a newly proposed traffic classification model, by detailing the background sur-

rounding the current trends and pitfalls of machine learning-based intrusion detection systems.

It will secondly detail the related explainability frameworks, methodologies and research that

have been explored in the novel PABLO approach.

5

2.1 Trends and Pitfalls of Machine Learning-based Net-

work Intrusion Detection Systems

2.1.1 What is a Network Intrusion Detection System (NIDS)?

Network security involves the protection of a network of devices from internal and external

attacks, which can occur on any layer of the OSI model. In this paper, an Intrusion Detection

System (IDS) monitors traffic on a network and aims to identify and flag attempted policy

violations or anomalous traffic on the basis that they are potential intrusions [24]. One common

type of IDS is a Network Intrusion Detection System, or NIDS. NIDSes monitor both inbound

and outbound traffic across a network, and utilise two primary detection methods: signature-

based and anomaly-based detection [15]. Signature-based detection (i.e. misuse detection)

checks network traffic against a database of known malicious traffic patterns known as ‘attack

signatures’ (and thus traditionally cannot detect new kinds of attacks), whereas anomaly-based

detection evaluates network traffic against a constantly-changing baseline of ‘normal network

behaviour’, often via machine learning to[15]. Currently, the unique challenges of integrating

machine learning into anomaly detection, as compared to other areas, are a key factor for the

distinct lack of anomaly-based detection in commercial systems [35]. This research focuses on

two of those unique challenges: semantic gap, as detailed below, and the difficulty of adapting

models to new attack patterns.

2.1.2 “Outside the Closed World” and Semantic Gap

In their seminal paper, “Outside the Closed World: On Using Machine Learning for Network

Intrusion Detection”, Sommer and Paxson shed some light on the challenges that make ma-

chine learning more difficult to integrate into anomaly-based intrusion detection than in other

domains [35]. The main difficulties presented are outlier detection, the high cost of errors,

semantic gap, diversity of network traffic, and the difficulties of evaluating NIDSes [35]. The

particularly crucial issue of ’semantic gap’ refers to the gap between the results of a NIDS

(i.e., classification of network behaviour as malicious or benign) and ’transferring results into

actionable reports for the network operator’ [35].

Leading cybersecurity technology company CrowdStrike promotes the 1-10-60 rule: that

companies should become aware of intrusions within the first minute, understand the attack

within 10 minutes, and respond within 60 minutes [5]. However, cybersecurity teams often have

a high workload due to the amount of network traffic or behaviour flagged as ‘malicious’, and

6

it can require a considerable amount of time to understand a detected intrusion, as profession-

als must determine the location, category, status, and source of a potential attack with high

accuracy [35]. This high-pressure incident response time is where our problematic gap could

be greatly reduced: if professionals were given more information on the specific behavioural

anomalies causing traffic to be labelled as malicious, their workload could be reduced and they

could more easily determine methods of responding to this behaviour. This could be a valuable

method of improving both operator response time and understanding of the anomalous network

behaviour. Thus, the notion of reducing semantic gap ties closely into efforts to improve the

explainability of machine learning models, as discussed in section 2.2.

While PABLO contributes novel insights into the issue of semantic gap, challenges such as

high cost of errors and diversity and network traffic, as detailed in ‘Outside the Closed World’,

are nonetheless prevalent and urgent. As these challenges are outside the scope of this research,

the lack of mitigation for them in PABLO means that the performance of PyPABLO would not

be the same in a real-world setting. This is transparently discussed in the ‘Evaluation’ section,

but could also possibly be an area of value for future work.

2.1.3 Dos and Don’ts of Machine Learning

We now move from the subject of evaluating a model’s performance in relation to its usefulness,

and address the evaluation of a model’s statistical performance. Though this may seem trivial to

approach correctly, “Dos and Don’ts of Machine Learning in Systems Security” systematically

evaluates 10 common pitfalls which plague the evaluation of research into machine learning-

based security systems [4]. The top pitfalls identified by Arp, et. al. are presented as follows:

1. Sampling Bias occurs when training data does not represent the true data distribution of

a particular problem, causing the results of a model trained on said data to become less

trustworthy. To mitigate sampling bias, researchers should shed light on the limitations

of their datasets and take measures such as extending their datasets with synthetic data

or utilising multiple estimates of the true data distribution [4].

2. Label Inaccuracy occurs when the ground truth label for a classification-based security

system’s training data is potentially inaccurate, or when the system cannot adapt to

changes in adversary behaviour (label shift). This causes the security system to be inac-

curate in its classifications. Dataset labels should always be verified, or labelling should

be delayed until more data is collected and a more stable ground-truth can be verified [4].

7

3. Data Snooping can be split into three general categories: test snooping, where the model

is trained on testing data; temporal snooping, where time dependencies are ignored within

data (i.e. ‘snooping from the future’); and selective snooping, where the dataset is mod-

ified based on information not available in practice. Test and training data should be

separated early to avoid data leakage in the development process of a model. Addition-

ally, temporal dependencies should always be considered, and datasets with a variety of

familiarity should be used [4].

4. Spurious Correlations occur when a learning model makes false associations that correlate

with their classification problem. Explanation techniques should be applied and the

objective of a system should be defined well in advance to determine whether associations

are actually spurious [4].

5. Biassed Parameter Selection is an exceptional case of data snooping which occurs when

final parameters of a model are indirectly dependent on its testing dataset. This can be

mitigated by using a separate validation set for model selection and parameter tuning [4].

6. Inappropriate Baselines occur when a model is insufficiently evaluated in comparison

to a variety of other models. Complex models should be compared to both complex and

simple models, and simple models can be used as an appropriate baseline for performance.

Additionally, the suitability of non-ML approaches should be considered for the problem

domain [4].

7. Inappropriate Performance Measures occur when a lack of suitable performance measures

are considered for a particular application scenario, which can cause the performance of

a model to be incorrectly evaluated. Thus, researchers should include measures that are

useful for gauging the performance of a model in practice [4].

8. Base Rate Fallacy occurs when results are misinterpreted due to class imbalance, e.g. if

the negative class is predominant. Performance measures which account for class imbal-

ance should be used, such as precision, recall, or the Matthews Correlation Coefficient

[4].

9. Lab-Only Evaluation occurs when a machine learning model is not evaluated in a practi-

cal setting (i.e., it is evaluated only in a ‘closed-world setting’). Learning-based systems

should be tested in conditions that approximate the real world, e.g. accounting for tem-

poral or spatial relations, providing diverse network traffic, or monitoring storage and

8

runtime constraints [4].

10. Inappropriate Threat Models do not properly consider the hostility of a production envi-

ronment, such as the influence of adversaries on real world learning-based systems through

adversarial preprocessing, poisoning, and evasion. Threat models should be specific,

should assume that there is an adaptive adversary attempting to exploit the weaknesses

of the model, and should be monitored in all stages of development to mitigate potential

vulnerabilities [4].

The 30 papers which Arp, et al. evaluated to identify common pitfalls were all published at

‘top 4’ security conferences, and each contained at least one pitfall [4]. While the results of a

well-received paper cannot be entirely discredited by the presence of pitfalls, it is important that

this research evaluates works related to learning-based intrusion detection models through a lens

of awareness concerning the effects of potential pitfalls on experimental outcomes. In addition,

this research will seek to mitigate and transparently acknowledge all ten pitfalls detailed in

“Dos and Don’ts”.

2.1.4 CICIDS2017 Dataset

Aiming to mitigate many of these pitfalls, Sharafaldin, et al. developed the CICIDS2017

dataset [32]. This dataset was developed in response to one of the most rampant issues in

the systems security community– a lack of realistic, cutting-edge, detailed datasets available

for evaluating learning-based detection systems– which enables pitfalls such as data snooping

and sampling bias [33]. Sharafaldin, et al. created CICIDS2017 with the aim of addressing all

eleven key characteristics identified by Gharib, et al. in 2016 for a valid intrusion detection

dataset: “attack diversity, anonymity, available protocols, complete capture, complete interac-

tion, complete network configuration, complete traffic, feature set, heterogeneity, labelling, and

metadata” [32, 33]. CICIDS2017 and its successor, CSE-CIC–IDS2018, have become increas-

ingly relied-upon in the network intrusion detection research community on the assumption

that their stated quality is accurate [2, 8, 10, 39].

However, a few fundamental issues have been recently explored regarding CICIDS2017.

Firstly, the dataset contains incomplete records, and has a significant class imbalance [7, 28].

Panigrahi et al. mitigated these issues by eliminating incomplete records and merging similar

minority classes (e.g. FTP-Patator and SSH-Patator) in order to form new, more prevalent

attack classes [28]. Engelen et al. further evaluated the correctness and validity of the CI-

CIDS2017 dataset, finding that flows had been incorrectly split, that certain attacks were not

9

properly executed, that the original CSV files contain attributes which could encourage short-

cut learning in an intrusion detection model, that there was an unacceptable amount of noise

in the dataset, and that the performance of the dataset was not properly evaluated [7]. Engelen

et al. proposed a ‘corrected’ version of the CICIDS2017 dataset, which addresses many of these

issues while still suffering from class imbalance and potential shortcut learning [7]. Therefore,

despite the improvements brought by the datasets proposed by Panigrahi et al. and Engelen

et al., pitfalls such as spurious correlations and label inaccuracy are still present in the original

CICIDS2017 dataset and its ’improved’ counterpart by Engelen et al., and are transparently

discussed and mitigated in this research, as can be seen in the ‘Evaluation’ section [4, 7, 28].

2.1.5 Random Forest

The Random Forest classifier is a popular shallow learning classifier which creates multiple

decision trees in randomly selected subspaces of the feature space at training time, and chooses

the classification outputted by the most trees (i.e., the ‘majority vote rule’) [12]. Based on an

algorithm designed by Tin Kam Ho, this classifier has a reduced risk of overfitting in comparison

to decision-tree classifiers on fixed training datasets [12]. This is because the decision trees in

Random Forest are each built with randomly selected variables in order to reduce the likelihood

of trees containing similar biasses, i.e., the trees are less correlated [12]. The authors of the

original CICIDS2017 dataset and the ‘improved’ CICIDS2017 dataset each utilised a Random

Forest classification model to evaluate the performance of their datasets [7, 32]. Random Forest

was also found to be a more promising algorithm for end-user explainability in a study by Herm,

et al. [11] Therefore, this research will utilise the Random Forest classifier for PyPABLO due

to its superior levels of both explainable and statistical performance, and in order to properly

compare the results and explainability of this model to the original CICIDS2017 test model

and its ‘improved CICIDS2017’ counterpart.

Random Forest classifiers have three main hyperparameters which impact their performance:

node size, number of trees, and sample size [15]. Node size refers to the minimum number of

features in a leaf node of a decision tree; decreasing node size increases the depth of the decision

trees but can exponentially increase computation time [27]. In some software implementations

of Random Forest, such as the PySpark RandomForestClassifier, node size is tuned by the

parameter ‘maximum depth’, which controls the depth of each decision tree [37]. The number

of trees in a Random Forest implementation has a positive correlation with its accuracy, but it

has been observed that the greatest performance gain for a classifier occurs within the growth of

10

one hundred decision trees [27]. Probst, et al. define sample size as ‘the number of observations

[aka features] that are drawn for each tree’ [27]. Decreasing sample size allows for trees to be

more diverse, resulting in less correlation and therefore greater accuracy overall, although the

accuracy of individual trees may diminish [27]. The performance of a Random Forest classifier

also may be impacted because a significant amount of time and resources are required to

compute predictions for each decision tree [15]. In the final prototype for PyPABLO, Random

Forest hyperparameters are tuned via a validation dataset in order to gauge the effects of

utilising different hyperparameter values for random forest classifiers on the same dataset, and

to determine the highest-performing model.

2.1.6 Chosen Attacks for Detection

The final relevant factor for the performance of the experiments conducted in this research (as

detailed in Chapter 3) is the choice of attacks on which a model is trained and tested. The two

attacks chosen as ’novel’ attacks for testing the PyPABLO model are port scan attacks and

Patator brute force attacks.

Port scan attacks can be defined as the malicious use of port scanning tools such as nmap to

gain information on potential intrusion vectors in a network [19]. These attacks are a common

reconnaissance technique for attackers to discreetly probe target networks for vulnerabilities and

can be a precursor to a more compromising attack [3]. For instance, if an attacker determines via

port scanning that a device on the network has port 23 (Telnet) open and receiving, they could

take advantage of that fact to then remotely connect to that machine. Lee, et al. categorise

port scanning attacks into three main types: vertical scans (scanning multiple destination ports

on one host), horizontal scans (scanning one particular destination port on many hosts), and

block scans (scanning many destination ports on many computers) [19]. Since the CICIDS2017

and ’improved’ CICIDS2017 datasets only simulate port scan attacks between one victim and

one attacker at once, only vertical port scans are simulated [7, 32]. We can therefore assume

that a correctly-trained model should associate port scanning attacks or anomalous behaviour

with features such as ’Destination Port’ and ’Fwd PSH Flags’ [29]. These assumptions will be

revisited in the Evaluation Chapter (Chapter 5).

Brute force attacks in the context of network security are often taken to implicitly mean

brute force attacks on the SSH protocol; in the CICIDS2017 datasets, the SSH and FTP modules

of the brute-forcing tool Patator were chosen to represent brute force attacks [7, 17, 32]. These

attacks often come in the form of attackers attempting to guess a user’s password in order

11

to gain privileged access to their machine [25]. Since many users rely on simple or common

passwords, or they may reuse passwords, guessing a user’s password can be automated via tools

like Patator which utilise dictionaries of passwords or brute force algorithms to attempt many

possible password inputs [25]. Because of this, brute force attack flows often contain large

amounts of data in one direction (from the attacker to the victim), with only small amounts

of data being sent in return [29]. Therefore, one could expect a correctly-trained model to

associate features such as ’Fwd Packet Length Mean’, ’Init Win bytes forward’, and ’Bwd

Packet Length Std’ with SSH-Patator or FTP-Patator traffic flows [29]. As with the previous

port scan assumptions, this expectation will be revisited in Chapter 5.

Both port scan and brute force attacks are particularly insidious because they can easily

masquerade as benign behaviour and are extremely effective for escalating an attacker’s priv-

ileges. For instance, port scan attacks can often go un-observed because scanning tools such

as nmap are equally as common in the toolbelt of a network administrator as they are in the

belt of a malicious actor. Similarly, Brute force attacks can mimic the behaviour of a benign

user who may have simply forgotten their password. By training a model on port scan or

brute force attacks, the quantitative characteristics that identify these attacks can be observed.

Additionally, by testing a model on ’novel’ port scan and brute force attacks, insight can be

gained regarding how said model can learn the correct characteristics that are associated with

these attacks. We will explore both of these scenarios in this paper.

2.2 Evaluating Models via Shapley Value Explainability

2.2.1 Local Explainability

In machine learning, the ’explainability’ of a model refers to the possibility of gaining insight into

its behaviour when it classifies predictions, whether into the model’s overall behaviour (global

explainability) or just its reasoning regarding a particular prediction (local explainability) [38].

Herm, et al. posit that end users prefer explainability that focuses on the ‘reasoning’ behind

one particular prediction or classification by a machine learning model, i.e. local explainability

[11].

Although the sample size of the study by Herm, et al. was relatively small, with only

223 responses, it can still provide some key insights into how the issue of commercial viability

can be solved [11]. Firstly, the idea of a ’trade-off’ between model explainability and model

performance is not as ’clear cut’ as is commonly believed [11]. That is, it is possible to create

12

a model that is both high-performance and highly explainable to an end user. Secondly, their

subjects preferred explanations that required less cognitive effort, such as those which focused

on the ’why’ of a particular classification decision [11]. Therefore, end users may prefer high-

performance, locally-explainable machine learning models in their products. This aligns with

the proposed research objective of creating a machine learning model that could leverage local

explainability as a means of becoming more commercially viable.

2.2.2 SHAP – A Unified Approach to Interpreting Model Predictions

SHAP values, as calculated by the SHapley Additive exPlanations (SHAP) Python framework,

serve as an effective and unified approach for reaching the objective of creating a highly ex-

plainable intrusion detection model [30]. SHapley Additive exPlanations, or SHAP, is a Python

framework which utilises the classic game theory approach of Shapley Values to determine a

feature’s importance relative to the outcome of a model’s prediction [20, 30, 39]. In other words,

SHAP determines and visualises the ’contribution’ of a particular feature to a model’s classi-

fication decision. While simpler models are more ’inherently’ explainable or understandable,

such as SVMs, ensemble models such as Random Forest are too complex for humans to easily

comprehend, and thus require explanation in order to be more effective for operators [11, 30].

Lundberg and Lee propose a novel class of additive feature importance methods [30], which

contains six different explanation methods that all use the same explanation model:

g(z′) = ϕ0 +
M∑

i=1
ϕiz

′
i, (2.1)

where z′ ∈ 0, 1M , M is the number of simplified input features, and ϕi is in the set of

rational numbers [30].

SHAP connects two additive feature importance methods, explanation technique of LIME

and Shapley Values, in order to produce SHAP values, which measure the importance of a

feature in determining a particular concrete prediction [30, 38]. These two feature importance

methods are explained in section 2.2.3, below.

2.2.3 LIME and Shapley Values

Local Interpretable Model-Agnostic Explanations (LIME) is a concrete explanation technique

which aims to achieve interpretability, local fidelity, model-agnosticism (explainability regard-

less of the model), and a global perspective when evaluating a model [22, 38]. Ribeiro, et al.

13

argue that when explaining an output, explainers should use an interpretable representation,

i.e. one which prioritises interpretability to humans over representing the actual features used

by a classifier [22].

In LIME, x ∈ Rd denotes the ‘original representation’ of a particular outcome, and x′ ∈

{0, 1}d′ denotes the binary vector which maps the original representation x to its more inter-

pretable counterpart [22]. LIME formally defines an explanation as ‘a model g ∈ G, where G is

a class of potentially interpretable models’ such as decision trees [22]. Given a black box model

f , LIME trains g, an interpretable model (such as linear regression or a decision tree) based

on a permuted dataset, which then acts as a surrogate or approximation of f . A surrogate, or

interpretable, explanation is obtained through the following formula:

ξ(x) = arg min
g∈G

L(f, g, πx) + Ω(g) (2.2)

Where:

• πx represents the function defining locality around the ‘original representation’ x,

• L represents the fidelity function which measures how ‘unfaithful g is in approximating f

in the designated locality defined by πx’, and

• Ω(x) represents the complexity of g, i.e. the inverse of interpretability [22].

LIME attempts to minimise L(f, g, πx) so that the explainer g will be model-agnostic, and

to minimise Ω(x) so that the explanation g of any particular instance will be as interpretable as

possible [22]. Thus, LIME focuses on creating a local explanation model that is interpretable,

faithful to the original model, and capable of explaining any shallow or complex model.

Shapley Values were developed in game theory to gauge the responsibility of a player for

success in a collaborative game [31]. Shapley Regression Values are an additive feature attri-

bution method which assign importance to a feature based on the effect of that feature being

included in a dataset, and are computed via the following formula:

ϕi =
∑

S⊆F \{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i}) − fS(xS)] (2.3)

Where:

• F represents the set of all features,

• S represents a feature subset ⊆ F ,

14

• two models are trained, fS∪{i}, which contains the feature i which is being analysed, and

fS , which does not contain i,

• xS represents the values of each feature in S,

• and the differences between models which do and do not contain an arbitrary feature are

computed for all possible subsets S ⊆ F\{i} [30].

Shapley Regression Values are thus a weighted average of all possible feature differences.

The combination of LIME, which favours interpretability and adaptability, and Shapley Values,

which provide a comprehensive method of determining feature importance, unite in the SHAP

framework to provide a holistic solution for explainability in intrusion detection models.

2.2.4 An Explainable Machine Learning Framework for Intrusion De-

tection Systems (2020)

SHAP has previously had use cases such as natural language processing and computer vision;

however, research on SHAP for intrusion detection explainability is relatively recent. The first

use of SHAP for explaining learning-based intrusion detection models was published in 2020

[38]. In that work, Wang, et al. explored the use of SHAP for determining both local and global

explanations, and for interpreting the results of both one-vs-all and multi-class classifiers. The

paper suffers from its use of the NSL-KDD dataset. The dataset is relatively small, containing

only four types of attacks and approximately 150,000 rows of data [13]. In addition, NSL-

KDD suffers from class imbalance– for instance, User to Root attacks appear only 252 times,

in comparison to the 53,385 times that DoS attacks appear. Finally, the dataset is extremely

outdated and inaccurate, being based on the KDDCUP99 dataset, which is twenty-five years

old and is made up of simulated attack data. Because of this, it is highly likely that the

stated results are inaccurate. Nevertheless, the authors’ use of SHAP force plots to create

useful visualisations of local explanations to security personnel is particularly intriguing, and

the paper has pioneered SHAP in the intrusion detection domain.

2.2.5 An Explainable Intrusion Detection System (2021)

In 2021, the authors Wang, et al. expanded on the use of SHAP for intrusion detection by

creating global and local explanations from tree-type and convolutional neural network (CNN)

models [39]. From the CICIDS2017 dataset[32], they created five two-category datasets, each

containing a roughly equal distribution of an attack and benign data. The five attacks chosen

15

were DDoS, DoS, FTP-Patator, SSH-Patator, and Port Scan. While the results indicated

a good performance, SHAP global visualisations were created in order to indicate the level

of unreliability for each model and determine which features were deemed more important

for different attacks [39]. As mentioned in Section 2.1.4, CICIDS2017 suffers from multiple

flaws including class imbalance, label inaccuracy, inaccurate separation of traffic flows, and

potential for shortcut learning [7]. Because of the unusual class distributions of each dataset,

the data snooping required to separate the five datasets in this way, and the underlying flaws

in CICIDS2017, the results are potentially not indicative of the practical performance of the

two models that were investigated. In addition, the tables created in this paper to represent

local explanations are unclear and would not be practically useful.

2.2.6 IOT Classification and Explanation (2022, 2023)

In early 2022, Le, et al. explored the use of SHAP for evaluating, optimising and explaining

tree-based models trained on three different IoT datasets [18]. The authors explored both

binary classification and multiclass classification, and claimed 100% accuracy, F1 score and

ROC AUC metrics for multiple datasets [18]. They also used cross-validation to choose the

highest performing hyperparameters for their classifiers. Unfortunately, this research suffers

from datasets with a distinctly unequal class distribution, the most egregious of which being

the NF-BoT-IoT-v2 dataset which contains 98% malicious traffic and only 2% benign traffic [18].

Although the performance of their proposed method is higher than other classifiers trained on

the same datasets, the results are likely non-reproducible in real life and the practical viability

of their proposed classification method cannot be verified. Due to their use of the inappropriate

performance metric ROC AUC, which masks class imbalance and other pitfalls, their results

are potentially also inflated within the study [4].

Keshk et al. proposed a novel framework, SPIP (SHAP, Permutation feature importance,

Individual conditional expectation, Partial dependence plot), in 2023 [16]. Their objective was

to create global and local explanations that were useful to ’end-users, security experts and

researchers’ [16]. They describe Permutation Feature Importance (PFI) as determining feature

importance based on the variability of the model’s error when a feature is present or absent.

Individual Conditional Explanation (ICE) plots curves representing the relationship between

the label of an observation and the value of a particular feature. Partial Dependence Plot

(PDP) visualises the global relationship between a model prediction and a particular subset

of features. It is based on the unrealistic assumption that there is no correlation between the

16

subset of features chosen and the subset of features not chosen [16]. Utilising all methodologies

in SPIP, the researchers aim to provide both IDS debugging information and explanations of

attacks to network operators. The researchers acknowledge one particular pitfall, namely, the

use of the NSL-KDD dataset. Additionally, while SPIP is introduced as a potential anomaly

detector for novel attacks, the researchers do not attempt to test their SPIP-based model on

any ’novel’ attacks. Despite these drawbacks, the SPIP methodology serves as an interesting

area for future research, and should be explored further to determine its practical viability.

17

Chapter 3

Design & Specification

This section outlines the experiments, design and iterative development for PyPABLO, a

learning-based network intrusion detection model prototype. In total, four experiments were

designed: two baseline experiments which utilise the classifier and hyperparameters by Engelen

et al. [7] and a random split for training and test data, one experiment which utilises the

classifier and hyperparameters that were used by Engelen et al. [7], with a custom data split

to test the model’s ability to detect novel attacks, and one experiment which utilises validated

hyperparameters for detecting novel network attacks. The table below details the differences

between each experiment:

Experiment Dataset Used Attacks Detected Parameters Used

1.1 CICIDS2017 Known Engelen

1.2 Improved CICIDS2017 Known Engelen

2.1 Improved CICIDS2017 Novel Engelen

2.2 Improved CICIDS2017 Novel Optimised

The purpose and high-level design of each experiment is detailed below, along with diagrams

showing the pipeline of each experiment.

3.1 Baseline Experiments

The purpose of these baseline experiments is twofold: firstly, to attempt to recreate the perfor-

mance of a Random Forest classifier implemented by Engelen, et al., and secondly, to compare

the performance of two models which were identical, excepting that one will be trained and

tested on the original CICIDS2017 dataset, and one will be trained and tested on the improved

18

CICIDS2017 dataset by Engelen, et al. [7, 32]. This will enable analysis and comparison of the

quality of each dataset during runtime, and augment dataset quality observations by Engelen

et al. and Sommer, et al. [7, 35]. All experiments will be evaluated with regards to their

accuracy, F1 scores, precision, recall, and SHAP values.

3.1.1 Baseline Experiment - Original CICIDS2017 Dataset

CICIDS2017 Dataset

Data Preprocessing

Random Data Split

Random Forest ClassifierEngelen Hyperparameters

Model

Evaluation with SHAP

Training Data

Testing Data

Figure 3.1: Baseline Experiment - Original CICIDS2017 Dataset Pipeline

This experiment will utilise the Pyspark framework in order to preprocess and split data,

and to create the model [37]which will be trained and tested on the original CICIDS2017 dataset

[32]. The CICIDS2017 dataset will firstly be cleaned and made compatible with Pyspark and

SHAP, and then it will be randomly split 75:25 into training and testing datasets. All ex-

periments will utilise a Random Forest classifier; this baseline experiment will maintain the

hyperparameters of one hundred trees and a maximum depth of 30 for each decision tree, as

utilised by Engelen, et al. in their own experiments [7].

19

3.1.2 Baseline Experiment - ‘Improved’ CICIDS2017 Dataset

Improved CICIDS2017 Dataset

Data Preprocessing

Random Data Split

Random Forest ClassifierEngelen Hyperparameters

Model

Evaluation with SHAP

Training Data

Testing Data

Figure 3.2: Baseline Experiment - Improved CICIDS2017 Dataset Pipeline

This experiment will be implemented identically to the experiment detailed in 1.1; however,

this experiment will utilise the ‘improved’ CICIDS2017 dataset [7]. Therefore, this experiment

will be a baseline for performance of the model developed by Engelen, et al. when splitting the

‘improved’ CICIDS2017 dataset randomly. The experiment will be evaluated with the same

metrics and frameworks as all other experiments (see Section 3.1).

3.2 Custom Attack Split Experiments

The purpose of these ‘custom attack split’ experiments is to build a model which can effectively

detect novel network attacks. Rather than executing a random split between training and test-

ing data, testing data will contain all port scanning and brute forcing attacks, and training data

will contain the remainder of the traffic flows in the ‘improved’ CICIDS2017 dataset. Firstly,

20

the Engelen experiment (a high-performance research environment attack detection model, [7])

will be evaluated on its ability to detect novel attacks, and then a novel, optimised model will

be designed for more effective novel attack detection.

3.2.1 Novel Attack Detection with Engelen Hyperparameters

Improved CICIDS2017 Dataset

Data Preprocessing

Data Split by Attack

Random Forest ClassifierEngelen Hyperparameters

Model

Evaluation with SHAP

Training Data

Testing Data

Figure 3.3: Pipeline for Novel Attack Detection with Engelen Hyperparameters

The purpose of this third experiment is to mimic the work of Engelen et al. in order to

form a baseline of their model’s performance when tested on novel attacks [7]. While Exper-

iment 1.2 attempts to recreate their stated results, Experiment 2.1 aims to evaluate whether

their model’s performance remains as high when evaluated on novel attacks – a key element

for commercially successful anomaly-based detectors. A unique permutation of the improved

CICIDS2017 dataset will be used in order to evaluate the Engelen experiment’s ability to detect

port scan attacks as well as Patator attacks when not trained on those attacks. This experiment

can therefore be seen as a baseline for a high-performance model, implemented in a research

environment, when confronted with novel attacks.

Similarly to 1.2, this experiment will utilise the same hyperparameters and dataset as En-

gelen, et al. However, rather than randomly splitting the dataset into training and test data,

the test data will be comprised of all port scan and patator (the chosen representation of brute

21

force in the improved CICIDS2017 dataset) attacks, and the training data will be comprised of

all other traffic flows in the improved CICIDS2017 dataset.

3.2.2 Novel Attack Detection with Cross-Validated Hyperparameters

Improved CICIDS2017 Dataset

Data Preprocessing

Data Split by Attack

Model Training and Cross-ValidationRandom Forest Classifier

Best Model

Evaluation with SHAP

Training Data

Testing Data

Figure 3.4: Pipeline for Novel Attack Detection with Engelen Hyperparameters

The objective of this experiment is to design an explainable Random Forest model with

optimal settings for detecting novel port scan and brute force attacks. Training and testing

data will be split identically to the experiment outlined in 2.1. Training validation will be

implemented to choose the best model; thus, the hyperparameters of the final prototype model

may differ from the Engelen settings [7]. To avoid test snooping [4], the hyperparameters of

Experiment 2.2 are determined via a validation dataset composed of part of the original train-

ing data. This will result in a model which is optimised for known attacks, and its results will

be used to determine the effects of optimising for known attacks on anomaly detection of novel

attacks. The experiment will be evaluated with the same metrics and frameworks as experi-

ments 1.1, 1.2 and 2.1, and as with all other experiments, its results will be locally explained via

22

SHAP to determine the reasoning behind the decisions of this relatively ‘black-box’ ensemble

classification model when tasked with detecting novel attacks. This final experiment and its

validated model will be used as the final iteration for the PyPABLO prototype.

23

Chapter 4

Implementation

This chapter details key aspects of the package implementation of the PABLO methodology as

PyPABLO. The first section details the general layout for all experiments and the key differences

between experiments. The second section details the semantic and syntactic implementation of

each module in the PyPABLO package, as well as the full PyPABLO pipeline. Finally, the third

section discusses the most notable challenges and aspects of the PyPABLO implementation.

4.1 Experiment Setup

This section first describes the generalised pipeline for model creation and evaluation, then the

implementation for customising each experiment.

4.1.1 Generalised Experiment Layout

The general pipeline for all four experiments is detailed as follows:

• Load, preprocess and save datasets. Datasets are loaded from directories of CSV files,

preprocessed, and then the processed data is saved to minimise unnecessary computations.

• Split the dataset into train and test datasets. Depending on the experiment,

datasets are either split randomly into train and test sets, or they are split by attack type

(specified by the encoded ‘Label’ column in both datasets).

• Create, train and save the Random Forest classification model. Hyperparameters

for the model are either hardcoded or generated programmatically.

24

• Evaluate and visualise Random Forest model via SHAP and other metrics.

As stated in the Background and Design chapters, these metrics align with those recom-

mended by Arp, et al [4].

While all experiments followed this general pipeline, each experiment had a unique imple-

mentation of three control variables: dataset (either CICIDS2017 or ‘improved’ CICIDS2017),

data split (either a random 70:30 train:test split or a custom attack split), and Random Forest

hyperparameters (either following the tuning by Engelen et al. or utilising training validation

to optimise the model). The control variable setup for each experiment is detailed below.

4.1.2 Experiment 1.1 – ‘Baseline Experiment - Original CICIDS2017

Dataset’

As detailed in the Design chapter, the control variables for this experiment were set up as

follows:

• The dataset used was the original CICIDS2017 dataset [32]; this is specified as a command

line argument.

• The data split used was a random 75:25 training:testing split.

• The hyperparameters for the Random Tree classifier aligned with experiments by Engelen,

et al. [7]– maximum tree depth was hardcoded to 30, and the number of trees was set to

100.

The MacOS terminal command for executing this experiment is as follows:

python3 create_baseline_model.py MachineLearningCVE

4.1.3 Experiment 1.2 – ‘Baseline Experiment - ‘Improved’ CICIDS2017

Dataset’

In this experiment, the control variables were set up as follows:

• The dataset used was the ‘improved’ CICIDS2017 dataset[7]; this was specified as a

command line argument

• Data split and hyperparameter tuning were identical to Experiment 1.1.

The MacOS terminal command for executing this experiment is as follows:

python3 create_baseline_model.py ImprovedMachineLearningCVE

25

4.1.4 Experiment 2.1 – ‘Engelen Experiment with Custom Attack

Split’

In this experiment, the control variables were set up as follows:

• The dataset used was the ‘improved’ CICIDS2017 dataset[7]; this was specified on the

command line as in experiments 1.1 and 1.2

• The data split used was set by including ‘pbp’ as a command line argument when executing

the experiment code; this reserved all port scan and Patator attacks for testing while using

all data from the dataset as training data.

• The hyperparameters were identical to those in Experiments 1.1 and 1.2, i.e. following

the tuning by Engelen, et al. [7]

The terminal command for executing this experiment on MacOS is as follows:

python3 create_baseline_model.py ImprovedMachineLearningCVE pbp

4.1.5 Experiment 2.2 – ‘Optimised Experiment with Custom Attack

Split’

In this experiment, the control variables were set up as follows:

• The dataset used was the ‘improved’ CICIDS2017 dataset, specified as a command line

argument.

• The data split used was identical to that in Experiment 2.1, and required the inclusion

of the ‘pbp’ keyword when executing the experiment code

• The hyperparameters were set via a cross-validation function supported by PySpark;

the method of cross-validation will further be detailed in the create pypablo model.py

subsection below.

The MacOS terminal command for executing this experiment is as follows:

python3 create_pypablo_model.py ImprovedMachineLearningCVE pbp

4.2 Package Implementation

The implementation of the PyPABLO package involved five modules for the four pipeline

stages: preprocessing, data splitting, creation of the machine learning model, and evaluation of

26

Figure 4.1: A representation of how modules corresponded to the designed general pipeline for
all experiments

the model. All experiments shared the same preprocessing, data splitting and model evaluation

modules; model creation and pipeline execution functionalities were split between two modules:

create_baseline_module.py for experiments 1.1-2.1 and create_pypablo_model.py for ex-

periments 2.2.

This section will detail the semantic meaning of each module, augmented with notable code

snippets from the modules.

4.2.1 preprocess cic.py

Implementation This module is responsible for preprocessing a directory of CSV files which

have the same schema as the original or improved CICIDS2017 datasets [7, 32] (excepting a

duplicate ’Fwd Header Length’ column in the original CICIDS2017 dataset [7], which had to

be manually deleted). Preprocessing these datasets can be abstracted as the first stage of

the PABLO machine learning pipeline. The name of the CSV directory to be processed is

specified as a command line argument. When preprocess_cic.py is executed, it calls the

preprocess_data function.

Data Preprocessing preprocess_data takes one argument: csv_dir, the name of a

CSV file or directory to be processed. This function calls three functions sequentially:

1. load_data

2. clean_dataframe

27

3. create_ground_truth

This produces a PySpark DataFrame representation of the processed dataset. This DataFrame

is saved as a CSV directory in the Data/Processed subdirectory. preprocess_data is called

with the argument sys.argv[1]. It is displayed in Listing 4.1, below.

Data Loading load_data is a helper function which takes one argument: csv_path, a

string representing an absolute path to a CSV file or directory. It returns a PySpark DataFrame

containing the row data and schema of the directory.

DataFrame Cleaning clean_dataframe is a helper function which takes one argument:

df, a PySpark DataFrame. It deletes columns which may cause spurious correlations, such as

‘Timestamp’, or ‘Src IP’, which contains the source IP for a traffic flow and was present in the

improved CICIDS2017 dataset [7]. Columns containing ’attempted’ attacks are also deleted

from the DataFrame to avoid potential test snooping [4]. This function additionally removes

any duplicate rows or rows with problematic values, such as infinite or NaN values. clean_data

returns a PySpark DataFrame.

Ground Truth Creation create_ground_truth is a helper function which takes one

argument: df, a PySpark DataFrame. This function creates an encoded ground truth column,

‘GT’, which contains a float based on the value in the ‘Label’ column for each row. It returns

a PySpark DataFrame identical in schema and rows to df, but with the extra ‘GT’ column.

Encoding was implemented via PySpark StringIndexer, which can encode ’Label’ values based

on their alphabetical ordering. This allowed for consistent label encoding between experiments.

create_ground_truth is displayed below, in Listing 4.2.

To summarise, this module calls the preprocess_data function, which sequentially executes

load_data, clean_data, and create_ground_truth to create a processed PySpark DataFrame

from the CSV data directory specified at execution time. These three functions create a PyS-

park DataFrame from the specified file or files, remove problematic columns and rows, and

create a binary encoded column “GT” (ground truth), which simplifies all attack labels into

values of 1 (benign) or 0 (malicious).

Notable Source Code

Listing 4.1: preprocess data function

def prep roc e s s da ta (c s v d i r : str) :

r e l c s v p a t h = ”/Data/Raw/” + c s v d i r

df = load data (r e l c s v p a t h)

28

df = c lean data f rame (df)

df = c r ea t e g round t ru th (df)

new csv path = os . getcwd () + ”/Data/ Processed /” + c s v d i r

df . wr i t e . opt ion (” header ” , True) . mode(” ove rwr i t e ”) . csv (new csv path)

Listing 4.2: create ground truth function

def c r ea t e g round t ru th (df : DataFrame) −> DataFrame :

s t r i n g i n d e x e r = St r ing Indexe r (inputCol=” Label ” , outputCol=”GT” ,

str ingOrderType=” alphabetAsc ”)

df = s t r i n g i n d e x e r . f i t (df) . t rans form (df)

df = df . withColumn (”GT” , c o l (”GT”) . ca s t (IntegerType ()))

return df

4.2.2 split data.py

Implementation This module is responsible for splitting data into train and test PySpark

DataFrames, and for isolating particular Row objects based on column values. Its split_dataset

function is called by both create_baseline_model.py and create_pypablo_model.py. It

contains other helper functions for isolating and splitting data within a PySpark DataFrame.

split_data.py can be abstracted as the second stage in the PyPABLO pipeline. split_data

is not meant to be executed in isolation, rather, it contains the following data-splitting helper

functions which are used in the model creation modules: split_dataset, match_keyword,

isolate_attacks, get_row_with_matching_cols_index, get_row_with_matching_cols, and

get_gt_row. These functions are explained below.

Dataset Splitting split_dataset takes two arguments: df, a PySpark DataFrame, and

args, a list of strings, which are specified at execution time for the model creation modules.

When split_dataset is called, it evaluates the size of args to determine whether an optional

keyword has been specified for a custom dataset split. If no keyword is specified, split_dataset

proceeds with a standard 75:25 random split between train and test data, and returns the two

train and test DataFrames. If any keyword has been specified, the match_keyword function is

called, which creates and returns its own train and test datasets.

’Split’ Keyword Matching match_keyword takes two arguments: df, a PySpark DataFrame,

and keyword, a specified keyword. If the keyword matches any cases within the function, the

function returns a custom split of training and test data. For instance, specifying the pbp (port

29

scan, brute force, patator) keyword calls the isolate_attacks function with arguments for

returning a training and test DataFrame where port scan, SSH-Patator, and FTP-Patator at-

tacks have been isolated in their own test DataFrame separately from the rest of the data. If the

keyword has no matches, a standard 75:25 random split for training and test data is returned.

In the event that PyPABLO is used for future research on detecting other novel attacks, ex-

tensibility has been ensured: new keywords with custom train-test splits can be easily specified

in the match_keyword function. match_keyword returns the train and test DataFrames that it

has created. It is shown in Listing 4.3, below.

Attack Class Isolation isolate_attacks is a function which takes two arguments: df,

a PySpark DataFrame, and search_values, a list of float values which match potential values

in the ‘GT’ (ground truth) column of the DataFrame. Any row with a GT value matching a

value in search_values is separated into an isolated DataFrame. This function returns two

DataFrames for training and testing: one which contains all data excepting the rows matching

those ‘GT’ values, and one containing the rows with those specified values. The pattern-

matching snippet of isolate_attacks is shown in Listing 4.4.

Constraint-Matching via Index get_row_with_matching_cols_index is a helper func-

tion that returns the index of a row of a PySpark DataFrame, where two specified columns are

equivalent to a passed value. It takes four arguments: df, the DataFrame, val, the passed

value, and col_1 and col_2, which are the two names of columns to compare. It returns

the index of the first Row object found that adheres to these constraints, or None if no index

is found. This helper function was initially used in create_baseline_model.py to find the

indexes of observations that should be visualised, but instead, get_row_with_matching_cols

was used for greater efficiency.

Constraint-Matching via Row get_row_with_matching_cols is a helper function

which takes the same four arguments as get_row_with_matching_cols_index. The only dif-

ference between this function and the above function is that get_row_with_matching_cols

returns a Row object that adheres to the passed constraints (val, col_1, col_2). This func-

tion is called in create_baseline_model.py to find correctly-predicted observations for SHAP

visualisation, revealing the most impactful features for a particular prediction of a model.

get_gt_row is similar to get_row_with_matching_cols, but it takes only three arguments:

df, val and col. This is because this helper function returns a Row object based on the

value of only one column col. get_gt_row is called in both create_baseline_model.py and

create_pypablo_model.py to provide observations to plot when a model cannot correctly

30

predict certain attack classes. the source code for get_gt_row is provided below as Listing 4.5.

Notable Source Code

Listing 4.3: match keyword function

def match keyword (df : DataFrame , keyword : str) :

match keyword :

case ”pbp” :

t r a in ing da ta , t e s t d a t a = i s o l a t e a t t a c k s (df ,

[” 10 .0 ” , ” 11 .0 ” , ” 7 . 0 ”])

case ’ ’ | :

t r a in ing da ta , t e s t d a t a = df . randomSplit ([0 . 7 5 , 0 . 2 5])

return t r a in ing da ta , t e s t d a t a

Listing 4.4: isolate attacks snippet

for s e a r c h v a l u e in s e a r c h v a l u e s :

a t tack rows = df . f i l t e r (df [”GT”] == s e a r c h v a lu e) . c o l l e c t ()

a t t a c k d f = spark . createDataFrame (data=attack rows ,

schema=i s o l a t e d d f . schema)

i s o l a t e d d f = i s o l a t e d d f . union (a t t a c k d f)

Listing 4.5: get gt row snippet

return row = None

d f c o l l e c t = df . c o l l e c t ()

for row in d f c o l l e c t :

i f row . g e t i t e m (c o l) == val :

return row = row

break

i f return row i s None :

print (”row not found f o r GT o f va lue : ” , va l)

return return row

31

4.2.3 get metrics.py

Implementation This module is responsible for getting metrics of the performance of all

experiments. It contains the following helper functions, many of which are implemented

in create_baseline_model.py and create_pypablo_model.py: get_unique_model_info,

get_test_data_directory, get_prediction_metrics, get_shap_values, and get_shap_values_multicore.

Unique Model Information get_unique_model_info is a helper function that ex-

tracts a unique sequence of numbers from the name of a saved model. This function was

initially used to re-load saved models and evaluate them with a saved test dataset in a sep-

arate program; however, when an error with re-evaluating stored models was encountered,

the decision was made to create and evaluate models in the same program. For this reason,

get_unique_model_info is not present in the final iterations of create_baseline_model.py

or create_pypablo_model.py. The ’stored model’ error is explored further in the ’Notable

Challenges and Aspects’ section, below.

Absolute Path to Test Data get_test_data_directory is a helper function with a

similar purpose: taking one argument, model_id, this function returns an absolute path to

saved test data that corresponds to the specified model. It is also not present in the final

iterations of either model creation module.

Prediction Metrics get_prediction_metrics is a function which takes four arguments:

predictions_df (a PySpark DataFrame), label_col (a string, the name of the label column),

prediction_col (a string, the name of the column containing predictions, to be compared

to label_col), and split (a list of passed command line arguments). This function returns

the accuracy, precision, recall, F1 score, and precision-recall AUC for a given DataFrame of

model predictions. These values are utilised for model evaluation purposes, as can be seen in

the Evaluation chapter (Chapter 5). It serves as the main source of performance metrics for

models created by create_baseline_model.py or create_pypablo_model.py.

Single-Node SHAP Value Calculation get_shap_values is a function that takes

two arguments: model, a tree-based model, and test_df, a pandas DataFrame. This func-

tion is the single-node implementation for calculating SHAP values, in order to determine

local explanations of particular prediction observations and gain more knowledge about a

model’s reasoning. It is included in the pipelines of both create_baseline_model.py and

create_pypablo_model.py. This function creates and then extracts SHAP values from a

SHAP TreeExplainer (which provides explanations for tree-based models). This function then

returns the SHAP values and the Explainer.

32

The pandas DataFrame (test_df) argument is a result of the SHAP library’s incompatibil-

ity with PySpark DataFrames. Despite this particular incompatibility, the SHAP TreeExplainer

is actually compatible with tree-based PySpark classifiers, such as the RandomForestClassifier

[37].

Multi-Node SHAP Value Calculation get_shap_values_multicore is a function

which utilises multiple nodes to extract SHAP values from a PySpark model (model) and a

pandas DataFrame (test_df). It utilises code snippets from a blog post by Ebrahimi and Patel

[6], which have been cited in the module as necessary. This function takes advantage of the

parallelism inherent in PySpark to efficiently calculate SHAP values for large datasets. Firstly, a

SHAP TreeExplainer is created (as in the single-node SHAP value function, above). Secondly, a

pandas UDF calculate_shap is created, which takes an iterator of pandas DataFrame objects

as input and yields SHAP values for each DataFrame in the iterator [6]. After that, SHAP

values for the entire DataFrame are extracted via the PySpark mapInPandas function, which

partitions the DataFrame and applies calculate_shap to each partition concurrently. This

function shows promise for calculating SHAP values in a highly efficient manner [6], but suffers

from its extraction of SHAP values as a PySpark DataFrame. Due to difficulties converting this

DataFrame into the correct format for SHAP visualisation, this function was ultimately not used

in the final pipelines of any model creation module. Altering this function for compatibility with

SHAP visualisation functions, e.g. shap.force_plot is a viable area of future improvement

for both create_baseline_model.py and create_pypablo_model.py.

Notable Source Code

Listing 4.6: get shap values function

def g e t s h a p v a l u e s (model , t e s t d f) :

e x p l a i n e r = shap . TreeExpla iner (model)

shap va lues = e x p l a i n e r . shap va lues (t e s t d f ,

c h e c k a d d i t i v i t y=False)

return shap values , e x p l a i n e r

Listing 4.7: get shap values multicore snippet

def c a l c u l a t e s h a p (i t e r a t o r : I t e r a t o r [pd . DataFrame])

−> I t e r a t o r [pd . DataFrame] :

33

for X in i t e r a t o r :

y i e l d pd . DataFrame (

e x p l a i n e r . shap va lues (np . array (X) , c h e c k a d d i t i v i t y=False) [0] ,

columns=co l s ,

)

return schema = StructType ()

for f e a t u r e in c o l s :

return schema = return schema . add (S t ru c t F i e l d (f ea ture , FloatType ()))

print (” Bu i l t r e turn schema”)

must be spark d f so t h a t data i s compat i b l e wi th c a l c u l a t e s h a p

s p a r k t e s t d f = spark . createDataFrame (t e s t d f)

shap va lues = s p a r k t e s t d f . mapInPandas (ca l cu l a t e shap ,

schema=return schema)

print (”made spark shap va lues df ”)

4.2.4 create baseline model.py

Implementation The role of this module is to create trained models for experiments 1.1,

1.2 and 2.1. It is therefore the implementation for creating baseline models rather than an

optimised model prototype (Experiment 2.2).

Execution and Output create_baseline_model.py is executed with one mandatory com-

mand line argument (the name of a CSV directory), and one optional command line argument,

(a keyword for specifying a custom attack split). This module creates, trains, evaluates, visu-

alises, and saves a Random Forest model trained on this CSV data in the Scripts/Trained Model

subdirectory. create_baseline_model.py is different from previously discussed modules in

that it is not a collection of helper functions, but simply a series of executed statements which

make use of helper functions. Note that the CSV directory or file must be located in the

Data/Processed subdirectory. This following subsection describes the pipelines steps that are

executed for the create_baseline_model.py module.

Dataset A DataFrame df is created utilising the load_data function from

preprocess_cic.py.

Data Preprocessing and Splitting Train and test PySpark DataFrames are created

34

from df using the split_dataset function from split_data.py. Both the training DataFrame

and the testing DataFrame are further transformed to remove non-numerical features and add a

‘features’ column of type SparseVector, which contains the values for all features in a particular

row and is required for model fitting and evaluation in PySpark. The source code for this

pipeline stage is displayed in Listing 4.8, below.

Hyperparameters, Random Forest Classifier Secondly, a RandomForestClassifier is

tuned to match the Engelen experiment hyperparameters (maximum tree depth set to 30 and

number of individual decision trees set to 100), and is fitted to the training data. Because

this module is for baseline experiments, model optimisation via cross-validation has not been

implemented. This is displayed in Listing 4.9, below.

Model Testing and Predictions The Random Forest model then is tested and a DataFrame

is created, containing the model’s predictions for the test dataset. The get_prediction_metrics

function from get_metrics.py is utilised to print the model’s accuracy, precision, recall, F1

score, and PR AUC to the terminal.

SHAP Calculation and Visualisation Three observations are selected from the pre-

dictions DataFrame: one from the Port Scan attack class, one from the SSH-Patator class, and

one from the FTP-Patator class. If the ’pbp’ keyword has been specified as a command line

argument, the first three observations for these attack classes are chosen. This is due to the low

accuracy of Experiment 2.1, which utilises the pbp keyword and does not classify predictions

correctly. Otherwise, a correctly-predicted observation is selected for each attack class.

SHAP values are calculated for each observation utilising the get_shap_values function.

For multi-class classification with one instance per class, SHAP values are stored as a list of

arrays. The length of the list is equal to the number of attack classes in the specified dataset

[20, 21]. Each row represents the SHAP values for a particular attack class, and each column

represents the SHAP value for a specific feature [21]. For each attack class, the SHAP value also

represents whether the classifier labelled the observation positively (meaning ’this observation

belongs to this class’) or negatively (’this observation does not belong to this class’) [20, 30].

A locally-explainable SHAP force plot is then programmatically generated for each observa-

tion. SHAP force plots were chosen to visually represent each observation because they create

an intuitive representation of the most impactful features that positively or negatively influ-

enced a classifier’s prediction [21]. This allows for an evaluation of feature importance for each

attack class, an explanation of each prediction, and an investigation into potential spurious

correlations [4] that a model has made. Relevant code for this pipeline stage is displayed in

35

Listing 4.10, below.

Saving Model and Test Data Finally, a unique model ID is created, the trained Ran-

dom Forest model is saved in the Scripts/Trained Models subdirectory, and its corresponding

data for testing the model is saved in a CSV directory in the Data/Processed-Test subdirectory

for future model evaluation.

Notable Source Code

Listing 4.8: DataFrame transformation snippet from create baseline model.py

t ra in ing da ta , t e s t d a t a = s p l i t d a t a s e t (df , a rgs)

t r a i n i n g d a t a = t r a i n i n g d a t a . drop (” Label ”) # drop l a b e l column

s ince not numeric

t e s t d a t a = t e s t d a t a . drop (” Label ”) # drop l a b e l columnsince not numeric

exc lude f e a t u r e s from t r a i n i n g t h a t

would cause spur ious c o r r e l a t i o n s

c o l l i s t = df . columns

co lumns to exc lude = [” Label ” , ”GT”]

f e a t u r e s = l i s t (set (c o l l i s t) − set (co lumns to exc lude))

use VectorAssembler to add ’ f e a t u r e s ’ column to df ,

#conta in ing va l u e s o f a l l f e a t u r e s used f o r t r a i n i n g

vec to r a s s emb l e r = VectorAssembler (inputCols=f ea tu r e s ,

outputCol=” f e a t u r e s ”)

t r a i n i n g d a t a = vec to r a s s emb l e r . t rans form (t r a i n i n g d a t a)

t e s t d a t a = vec to r a s s emb l e r . t rans form (t e s t d a t a)

Listing 4.9: Model training snippet from create baseline model.py

r f = RandomForestClass i f i e r (maxDepth=30, numTrees=100 , l a be lC o l=”GT” ,

f e a t u r e s C o l=” f e a t u r e s ”)

r f mode l = r f . f i t (t r a i n i n g d a t a)

36

Listing 4.10: SHAP calculation and visualisation from create baseline model.py

rows = [portscan row , ssh row , f tp row]

s e l e c t e d r o w s d f = spark . createDataFrame (rows)

pd df = s e l e c t e d r o w s d f . drop (’ f e a t u r e s ’ , ’GT’ , ’ rawPredict ion ’ ,

’ p r o b a b i l i t y ’) . toPandas ()

shap values , e x p l a i n e r = g e t s h a p v a l u e s (r f model , pd df)

print (” portscan p l o t : ”)

index = 0

shap . f o r c e p l o t (e x p l a i n e r . expec ted va lue [0] ,

shap va lues [0] [index] ,

pd df . i l o c [index , :] , matp lo t l i b=True)

4.2.5 create pypablo model.py

Implementation The role of this module is to create trained models for experiment 2.2, i.e.

‘Novel Attack Detection with Cross-Validated Hyperparameters’. create_pypablo_model.py

is quite similar to create_baseline_model.py. It is executed with the same mandatory and

optional command line arguments as create_baseline_model.py, it also saves a Random

Forest model in the Scripts/Trained Models subdirectory, and it also implements functionality

for model training, testing, evaluation, SHAP calculation, and SHAP visualisation.

Where create_pypablo_module.py differs from its baseline model counterpart is that it

utilises a train-validation data split to further tune and optimise the hyperparameters for its

Random Forest classifier. As the creation module for the final PyPABLO prototype model,

the model produced from this module will be evaluated on its ability to detect novel attacks in

comparison to its Engelen Experiment counterpart (Experiment 2.1), which is created by the

create_baseline_model.py module.

Dataset, Data Preprocessing and Splitting The dataset loading and train-test split

pipeline stages are identical to those in

create_baseline_model.py; the test dataset follows the custom attack split in Experiment

2.1.

Hyperparameters, Random Forest Classifier Then, a RandomForestClassifier is cre-

ated without any numerical hyperparameters specified. These hyperparameters are decided via

cross-validation. Nine Random Forest classification models with different hyperparameters are

tested on a ‘validation set’, i.e. a subset of the initial training dataset. In PySpark, the method

37

Figure 4.2: A visualisation of the param map implemented in Experiment 2.2; the green model
was chosen as the best model for the PyPABLO prototype

of splitting a DataFrame into train and validation datasets is to firstly build a ‘param grid’,

which sets specified hyperparameters (in this case, maxDepth and numTrees) to specified values

([10, 20, 30] and [50, 100, 150]) respectively [36]. This param grid will result in nine different

models being trained, as can be seen in the figure below:

Then, a TrainValidationSplit model is instantiated, taking five arguments:

• rf, the RandomForestClassifier

• param_grid, the param grid

• evaluator, a BinaryClassificationEvaluator, which is used to evaluate each potential

model

• the value of the attribute trainRatio, which is set between 0 and 1. This attribute

represents the fraction of training data to be used for training (the remaining data is used

as the validation set); in this case, it was set to 0.75.

• the value of the attribute parallelism, which defines the number of concurrent threads

while running parallel algorithms. This was set to 5 to increase performance up to the

computational limits of the research machine.

This TrainValidationSplit model is then fitted to the training data, resulting in nine

different models being trained. The Train Validation process is illustrated in Listing 4.11,

below. The best model out of the nine is separated and saved; the rest are discarded. In this

38

implementation, the ‘best’ model is decided by evaluator, using two metrics: area under the

ROC curve (receiver operating characteristic curve) and area under the precision-recall curve.

The hyperparameter were chosen based on an analysis of Random Forest hyperparameters, as

shown in the Background Chapter. Increasing the maximum number of trees and maximum

depth of trees can increase a model’s accuracy for known data; the chosen ’best model’ provides

insight on if this holds true for this particular classifier.

Given the custom attack split, the model selected as the ‘best model’ was Model 6, which

interestingly has a maximum tree depth of 20 and 150 individual decision trees. The hypothesis

of PyPABLO is that because this hyperparameter selection was evaluated as performing higher

than a model with experiment 2.1’s hyperparameters on the validation set, then this classifier

will perform higher than experiment 2.1 on detecting novel attacks. This is explored and

evaluated further in Chapter Five.

Model Testing and Predictions The model is tested identically to Experiment 2.1 (i.e.

create_baseline_model.py with the ’pbp’ keyword specified as a command line argument).

SHAP Calculation and Visualisation SHAP Value calculation and SHAP force plot

visualisation are also identical to Experiment 2.1; that is, SHAP values and force plots are

generated for three observations with ground truth values matching the Port Scan, SSH-Patator

and FTP-Patator attack classes.

Saving Model and Test Data Identically to create_baseline_model.py, a unique

model ID is created using the current date and time, the trained Random Forest model is saved

in the Scripts/Trained Models subdirectory, and its corresponding testing_data DataFrame

is saved in a CSV format in the Data/Processed-Test subdirectory for future evaluation.

Notable Source Code

Listing 4.11: Train validation snippet

r f = RandomForestClass i f i e r (l abe lCo l=”GT” , f e a t u r e s C o l=” f e a t u r e s ”)

param grid = ParamGridBuilder () \

. addGrid (r f . maxDepth , [1 0 , 20 , 3 0]) \

. addGrid (r f . numTrees , [5 0 , 100 , 1 5 0]) \

. bu i ld ()

eva luato r = M u l t i c l a s s C l a s s i f i c a t i o n E v a l u a t o r () . s e tLabe lCo l (”GT”)

tvs = Tr a i nV a l i d a t i o n S p l i t (e s t imator=r f ,

39

estimatorParamMaps=param grid ,

eva lua to r=eva luator ,

t r a inRat i o =0.75 ,

p a r a l l e l i s m =5)

r f mode l = tvs . f i t (t r a i n i n g d a t a)

best model = r f mode l . bestModel

4.2.6 prove shap pyspark compatibility.py

This small program is a proof of concept for the compatibility of a PySpark Random Forest

Classification model and a SHAP Explainer object, when attempting to generate SHAP values.

It was a ’prototype for the prototype’ created in late December to ensure that the PySpark

framework could be used with the SHAP library, as had been planned. This program con-

tains similar pipeline stages to create_baseline_model.py, but does not align any particular

experiment category. It is included in the source code and this report to provide additional

insight into the development process for this research.

4.3 Notable Challenges and Aspects

4.3.1 Stored Model Error

While developing the PyPABLO implementation, one initial plan was to separate different

pipeline stages into different executable programs. First, data would be preprocessed by

preprocess_cic.py. Models would be generated and saved in create_baseline_model.py

and create_pypablo_model.py. They could then be evaluated in a module named

evaluate_model.py, and SHAP values and visualisations could be generated in a module

named generate_shap.py. This isolated the execution of individual pipeline stages, allowing

for useful features such as evaluating a model multiple times with different evaluate_model.py

implementations. Initially, this was streamlined and drastically reduced time spent debugging.

However, late in the development process, a serious issue was discovered. If one were to train

and evaluate a PySpark model in the same program, its performance metrics were very different

than if a model and its corresponding test dataset were saved, and then re-loaded for evaluation.

In fact, saving and re-loading a model and its test data resulted in the model classifying every

40

traffic flow as benign, regardless of its actual class! Obviously, this could not remain in the

pipeline. Although debugging for this particular issue occurred for a significant amount of time,

the issue could not be resolved whilst still retaining the model saving and re-loading features.

Therefore, multiple pipeline stages (model creation, evaluation, and SHAP visualisation) were

condensed into the create model modules, which resulted in models that performed far more

highly (i.e., correctly predicted attacks, and did not claim that every traffic flow was benign).

The source of this issue remains unknown, but its effects on PyPABLO were resolved.

4.3.2 Multi-Core SHAP Value Generation

Another particularly interesting challenge regarding SHAP is the inefficiency of generating

SHAP values. This is because Shapley Value generation is NP-hard [30, 31]. One main reason

behind the use of the PySpark framework in this research is its efficiency with regards to

processing large datasets [36], [16]. It also showed great promise for efficiently and concurrently

generating SHAP values [6], calculating SHAP values for an entire 700,000-row test dataset in

only four minutes in this research. Despite this incredible processing time, the implementation

of PySpark and multi-node SHAP calculation resulted in a PySpark DataFrame containing

all SHAP results, rather than the usual list of arrays that would be generated to contain

multi-class SHAP values. Great difficulties were encountered whilst attempting to shape this

DataFrame into the correct format for SHAP force plots [21], and efforts were not successful.

The get_shap_values_multicore function was left unresolved.

However, the solution for this challenge was very simple. In fact, SHAP values did not have

to be generated for an entire dataset containing hundreds of thousands of observations. The

main objective of utilising SHAP–generating locally-explainable plots that could visualise the

reasoning behind a particular observation– could be simply obtained by only generating SHAP

values for a few observations. This results in a SHAP value calculation time that is still quite

low, without wasting time and computational resources on needlessly calculating large amounts

of SHAP values. This is also perhaps a more realistic implementation for how SHAP could be

utilised for a commercial intrusion detector, since operators would generally only require SHAP

plots for a small percentage of the network traffic that they would observe and filter.

41

Chapter 5

Results & Evaluation

This chapter of the report details the key results and insights from all experiments. The

Experiment Settings section details the conditions under which each experiment took place.

The two following ’Experiments’ sections utilise accuracy, precision, recall, and F1 scores to

provide a holistic evaluation of each experiment. They additionally use SHAP to visualise

examples of local explanations, as designed and implemented in the Design & Specification

(link) chapter and the Implementation chapter (link). The ’Overview of Results’ section details

key insights gleaned from all experiment results.

5.1 Experiment Settings

All experiments were conducted and evaluated on a 2022 Apple M2 laptop with 8 GB of RAM,

an 8-core CPU, and a 16-core NPU.

5.2 Baseline Experiments

Table 5.1 displays the chosen metrics for experiments 1.1 and 1.2. Each experiment was run

five times, and its metrics (accuracy, precision, recall and F1 score) were averaged from these

five models.

The command used to run each experiment 5 times was:

code % for i in {1..5}; do python3 Scripts/create_baseline_model.py

[name of dataset]; done

Tables 5.1-5.3 display the results from experiments 1.1 and 1.2, as designed in subsections

3.1.1 and 3.1.2 in the Design & Specification chapter (Chapter 3), and as implemented by the

42

Experiment Accuracy Precision Recall F1 Score
1.1 0.998 0.999 0.999 0.998
1.2 0.994 0.999 0.993 0.993

Table 5.1: Results for Experiments 1.1 and 1.2

Trials
1.1 1 2 3 4 5 Average

Accuracy 0.998 0.998 0.998 0.998 0.998 0.998
Pr 0.999 0.999 0.999 0.999 0.999 0.999
Re 0.999 0.999 0.999 0.999 0.999 0.999
F1 0.998 0.998 0.998 0.998 0.998 0.998

Table 5.2: Full Results for Exp 1.1

Trials
1.2 1 2 3 4 5 Average

Accuracy 0.993 0.994 0.994 0.993 0.994 0.994
Pr 0.999 0.999 0.999 0.999 0.999 0.999
Re 0.993 0.993 0.994 0.993 0.993 0.993
F1 0.993 0.993 0.994 0.993 0.993 0.993

Table 5.3: Full Results for Exp 1.2

create_baseline_model.py module in the Implementation Chapter (Chapter 4).

These two baseline experiments both have nearly indistinguishable results upon a first

glance; they both appear to perform quite well, including when class imbalance in the set

is considered (as evaluated by the F1 score metric). SHAP force plots are used to provide

operator-friendly examples of local explanations for each experiment, as seen below.

Figure 5.1: (Port Scan, 1.1)A SHAP force plot visualisation of feature importance for a Port
Scan observation, Experiment 1.1

Figures 5.1 and 5.2 illustrate feature importance for individual Port Scan observations from

Experiments 1.1 and 1.2.

Figure 5.1 (Port Scan, 1.1) suggests that Backward PSH Flags and Flow Duration were the

most impactful features for correctly classifying the observation as being a Port Scan attack,

43

Figure 5.2: (Port Scan, 1.2) A SHAP force plot visualisation of feature importance for a Port
Scan observation, Experiment 1.2

whereas Flow IAT Mean (‘the mean time between two packets sent in the flow’)[1] and Average

Packet Size influenced the predicted score negatively.

Figure 5.2 (Port Scan, 1.2) depicts Packet Length Minimum and ACK flag count as being the

most impactful positive features for the Port Scan attack, and Fwd Bytes/Bulk Avg (‘average

number of bytes bulk rate in the forward direction’)[1] and Packet Length Mean being the most

impactful features for influencing the classifier’s decision negatively.

Figure 5.3: (SSH-Patator, 1.1) A SHAP force plot visualisation of feature importance for a
SSH-Patator observation, Experiment 1.1

Figures 5.3 and 5.4 represent feature importance for individual SSH-Patator observations

from Experiments 1.1 and 1.2.

Figure 5.3 (SSH-Patator, 1.1) depicts how PSH Flag Count, Flow Duration, Fwd Packets per

second, and Destination Port most positively influenced the classifier’s predicted score, whereas

Backward IAT Mean (‘mean time between two packets sent in the backward direction’ [1]) and

Flow IAT Mean (‘Mean time between two packets sent in the flow’[1]) were most impactful for

negatively influencing the classifier’s predicted score.

Figure 5.4 (SSH-Patator, 1.2) suggests many positively impactful features for the SSH-

44

Figure 5.4: (SSH-Patator, 1.2) A SHAP force plot visualisation of feature importance for a
SSH-Patator observation, Experiment 1.2

Patator attack, namely, Fwd Seg Size Min (‘Minimum Segment Size observed in the forward

direction’ [1]), SYN Flag Count, Destination Port, URG Flag Count, Idle Std (‘standard de-

viation time a flow was idle before becoming active’ [1]), and Total Fwd Packet. The most

negatively impactful features were Fwd Urg Flags and Flow IAT Max (‘Maximum time be-

tween two packets sent in the flow’ [1]).

Figure 5.5: (FTP-Patator, 1.1) A SHAP force plot visualisation of feature importance for a
FTP-Patator observation, Experiment 1.1

Figures 5.5 and 5.6 refer to the most impactful features for two FTP-Patator observations

from Experiments 1.1 and 1.2.

Strangely, Figure 5.5 (FTP-Patator, 1.1) suggests only positive feature contributions: Packet

Length Std (standard deviation length of a packet), Flow IAT Mean, and Fwd Packet Length

Mean.

Figure 5.6 (FTP-Patator, 1.2) displays Flow IAT Max and Bwd Packet Length Mean (’Mean

size of packet in backward direction’, [1]) as the most positively impactful features on the

classifier’s prediction, and Bwd IAT Total (‘total time between two packets sent in the backward

direction’ [1]), Total Length of Bwd Packet, and Active Min (‘minimum time a flow was active

45

Figure 5.6: (FTP-Patator, 1.2) A SHAP force plot visualisation of feature importance for a
FTP-Patator observation, Experiment 1.2

before becoming negative’ [1]).

5.3 Novel Port Scan and Brute Force Attack Detection

Experiments

This section pertains to the results from Experiments 2.1 and 2.2, as designed in Section 3.2.

The following table represents the performance metrics for each ’novel attack split’ experiment:

Experiment Accuracy Precision Recall F1 Score
2.1 0.0 Not Available Not Available 0.0
2.2 0.0 Not Available Not Available 0.0

Table 5.4: Results for Experiments 2.1 and 2.2

Obviously, both classifiers were completely unable to correctly classify ’novel’ port scan and

Patator attacks. For both datasets of model predictions, all flows were labelled incorrectly, and

generally were labelled as benign traffic. The SHAP force plots below provide some insight into

the reasoning behind both models’ predictions.

Figure 5.7 (Port Scan, 2.1) displays the many features that contributed to the classifier’s

incorrect prediction of the attack as benign. The positively impactful features were Bwd Init

Win Bytes (’The total number of bytes sent in initial window in the backward direction’, [1]),

Bwd IAT Mean (’Mean time between two packets sent in the backward direction’, [1]), ECE

Flag Count (’Number of packets with ECE’, [1]), Total Bwd Packets, Subflow Bwd Bytes (’the

average number of bytes in a sub flow in the backward direction’, [1]), and Bwd Packet Length

Min. The most negatively impactful feature was Source Port.

Figure 5.8 (Port Scan, 2.2) displays the most positively impactful features as being Idle

46

Figure 5.7: (Port Scan, 2.1) A SHAP force plot visualisation of feature importance for a Port
Scan observation, Experiment 2.1

Figure 5.8: (Port Scan, 2.2) A SHAP force plot visualisation of feature importance for a Port
Scan observation, Experiment 2.2

Mean (‘mean time a flow was idle before becoming active’, [1]) and Subflow Bwd Bytes for a

Port Scan observation from Experiment 2.2. The most negatively impactful features were Bwd

URG Flags, Flow IAT Min (’Minimum time between two packets sent in the flow’, [1]), and

Flow Packets per second.

Figure 5.9: (SSH, 2.1) A SHAP force plot visualisation of feature importance for a SSH-Patator
observation, Experiment 2.1

Figure 5.9 (SSH-Patator, 2.1) displays the most impactful features for the classifier’s in-

correct prediction. The most positively impactful features were Fwd IAT Total (’total time

between two packets sent in the forward direction’, [1]), Idle Mean, Bwd IAT Max (’Maximum

47

Figure 5.10: (SSH, 2.2) A SHAP force plot visualisation of feature importance for a SSH-
Patator observation, Experiment 2.2

time between two packets sent in the backward direction’, [1]), and Bwd Packet Length Min.

The most negatively impactful features were Active Max (‘maximum time a flow was active

before becoming idle’), Active Min, and Idle Std.

Figure 5.10 (SSH-Patator, 2.2) displays the most impactful features for the classifier’s in-

correct prediction. The most positively impactful features were Source Port, Flow Packets per

second, Bwd Header Length, Fwd IAT Min (’minimum time between two packets sent in the

forward direction’, [1]), Fwd Init Win Bytes (’total number of bytes sent in initial window in

the forward direction’, [1]), and Bwd IAT Mean. The most negatively impactful feature was

Bwd Packet Length Max.

Figure 5.11: (FTP, 2.1) A SHAP force plot visualisation of feature importance for a FTP-
Patator observation, Experiment 2.1

Finally, Figures 5.11 and 5.12 display the feature importance behind the incorrect predic-

tions of FTP-Patator observations from both the 2.1 and 2.2 classifiers.

Figure 5.11 (FTP-Patator, 2.1) suggests five main positively impactful features on the clas-

sifier’s prediction: Flow Duration, Flow Packets per second, Packet Length Max, Fwd IAT

Max, and RST flag count. The two most negatively impactful features for the prediction were

Total Bwd Packets and Bwd IAT Max.

48

Figure 5.12: (FTP, 2.2) A SHAP force plot visualisation of feature importance for a FTP-
Patator observation, Experiment 2.2

Figure 5.12 (FTP-Patator, 2.2) suggests that Fwd Packet/Bulk Avg, Bwd URG Flags, and

Fwd Act Data Pkts were the most positively impactful features, whereas Subflow Bwd Bytes,

Active Std, and Fwd URG Flags were the most negatively impactful.

5.4 Overview of Results

5.4.1 Exp. 1.1 - Results and Prediction Behaviour

In Experiment 1.1, the Random Forest classifier was trained and tested on the original CI-

CIDS2017 dataset [32]. The classifier performs quite well statistically. However, the dataset

on which it was trained was shown to have considerable issues regarding delineation between

traffic flows [7], and this shows in some of the SHAP force plots generated. For instance, for a

correctly-predicted Port Scan attack, relevant features such as ’Destination Port’ and ’Fwd PSH

Flags’[29] were not considered impactful. Instead, generally unrelated features such as Flow

IAT mean, average packet size and flow duration were considered more impactful. Similarly, for

the SSH-Patator observation, features that may not be related to the actual characteristics of

the attack class were given great importance. These ’impactful’ features include ’Fwd Packets

per second’, ’Flow Duration’ and ’PSH Flags count’. One feature given greater importance for

the FTP-Patator observation generally aligned with expectations – ’Fwd Packet Length Mean’.

These features, which do not have an obvious association with their observation labels,

could wrongly indicate a false positive result to a network operator if they were to see this

plot. Therefore, despite the high performance of the 1.1 classifier, high performance or high-

trustworthiness of this classifier in a real network cannot be ensured at this time.

49

5.4.2 Exp. 1.2 - Engelen, et al. Results Reproducibility

In Experiment 1.2, the performance of the classifier in this research aligns with the performance

of the classifier in the paper by Engelen, et al [7]. Both classifiers report high accuracy, precision,

and recall. The 1.2 classifier does exhibit some potentially useful feature contributions. For

instance, ‘ACK flag count’ and ‘Packet Length Min’ both are relevant features for correctly

predicting port scan attacks [29]. This could be potentially explained by if Sharafaldin, et al.

[32] executed ACK scanning attacks. Additionally, ‘Destination Port’ and ‘Total Fwd Packet’

are good potential indicators of SSH brute forcing attacks that were identified by the classifier

[29].

Nevertheless, both classifiers also present potential shortcut learning. Both the Engelen

classifier and the 1.2 classifier utilise the (generally) irrelevant ‘Total Fwd Packet’ and ‘Fwd

Seg Size Min’ features to differentiate between different attack classes [7]. There were also

some features deemed important by the 1.2 classifier, but the validity or spuriousness of their

correlation to an attack class was not known. These features include the negatively-impactful

’Packet Length Mean’ and ’Fwd Bytes/Bulk Avg’ features for port scan attacks, the positively-

impactful ’Idle Std’ and ’URG Flag Count’ features for SSH-Patator attacks, and the negatively-

impactful ’Bwd IAT Total’ feature for FTP-Patator attacks.

Overall, there is an indication of some shortcut learning behaviours and some valid corre-

lations. A network operator may find the feature importance of these observations to align

more with their expectations, and thus might trust this classifier more than the Experiment

1.1 classifier. The performance and behaviours in Experiment 1.2 were also found to generally

align with those of the classifier created and evaluated in the Engelen, et al. 2021 paper [7].

5.4.3 Exp 2.1 - Engelen Practical Viability

In Experiment 2.1, the withholding of ’novel’ port scan, SSH-Patator, and FTP-Patator attacks

serves as an attempt to simulate how a commercial intrusion detector regularly encounters

novel attack techniques. The classifier chosen for Experiment 2.1 is generated with the same

hyperparameters as Experiment 1.2 and those used in the Engelen, et al. 2021 paper [7].

As can be immediately seen in Table 5.4, the 2.1 classifier was incapable of detecting any

malicious attacks. Regarding the port scan observation (Figure 5.7), no features with obvi-

ous relevance to a Port Scan attack could be identified. Some immediately irrelevant features

(e.g. Source Port) were wrongly identified by the classifier as impactful for this prediction.

The features identified as impactful for both Patator observations appear similarly not rele-

50

vant (Figures 5.9, 5.11). Based on the model performance and the non-relevant ’important’

features, a network operator would be able to more immediately tell that this classifier was not

trustworthy for a real network.

One hypothesis for this unsuccessful classifier is that these attacks are too similar to the

benign traffic that was generated for the dataset. Sharafaldin et al. detail how activity from

25 network users was used by a Java-based agent to produce benign traffic ’based on HTTP,

HTTPS, FTP, and SSH protocols’ [32]. In particular, the bot-generated benign FTP and SSH

traffic may have caused the classifier to identify all Patator traffic as benign.

5.4.4 Exp 2.2 - PyPABLO Results and Correlations

The PyPABLO classifier was similarly completely unsuccessful. The port scan and FTP-Patator

observations did not contain any obviously relevant features. One important feature for the

SSH-Patator observation, Fwd Init Win Bytes, was present in the list of relevant brute force

features mentioned in the Background Chapter [29]. Unfortunately, this feature alone was not

important enough for the classifier to predict the observation as being malicious.

Based on the lack of malicious traffic detected and the failure of the classifier to incorporate

actually relevant features into its reasoning for these observations, a network operator would

easily identify this classifier as being untrustworthy. It is also clear that cross-validation and

optimising for known attacks did not improve the performance of the classifier on novel at-

tacks. This is clear because there was no performance improvement between the 2.1 and 2.2

classifiers, despite one utilising cross-validation for model selection and one utilising pre-decided

hyperparameters. Therefore, that aspect of the PABLO methodology should be re-evaluated

and improved upon. Despite this, the use of SHAP is still clearly useful for understanding

what locally ’went wrong’ or was not ’trustworthy’ for particular novel attack predictions. The

soundness of the methodology for PABLO is therefore somewhat successful.

5.4.5 Contribution of SHAP Plots to Model Explainability

Although other aspects of the PABLO methodology were not successful for identifying novel

attacks, SHAP force plots were a valuable method of determining the reasoning and potential

information behind particular predictions. More insight was able to be gained on the reasoning

behind a particular traffic flow and the potential vector of intrusion for that flow. For instance,

if a network operator were alerted to the observation in Figure 5.2 as being a port scan attack,

the feature importance on that plot could allow them to hypothesise that an ACK scan was

51

the particular port scan attack being performed.

5.4.6 Potential Research Pitfalls

In this subsection, a list is displayed of potential research pitfalls, and the potential of those

pitfalls in this research is discussed.

1. Sampling Bias occurs when training data does not represent the true data distribution

of a particular problem, causing the results of a model trained on said data to become

less trustworthy [4]. This pitfall is present in Experiments 1.1 and 1.2, due to the

unrealistic data distribution in both the CICIDS2017 [32] and Engelen CICIDS2017 [7]

datasets. This is not applicable in Experiments 2.1 and 2.2, because those experiments

are intended to solely test the classifier on novel attacks.

2. Label Inaccuracy occurs when the ground truth label for a classification-based security

system’s training data is potentially inaccurate, or when the system cannot adapt to

changes in adversary behaviour (label shift)[4]. Label inaccuracy may be present in

these experiments, since there are multiple instances of inaccuracy being spotted in the

CICIDS2017 dataset [7, 28]. This issue has been mitigated by the ’improved’ dataset[7]

in experiments 1.2-2.2.

3. Data Snooping[4]. Test snooping has been avoided, particularly in experiments 2.1 and

2.2, where certain attack classes are reserved solely for testing purposes. Training and

testing data for other experiments was randomly selected, reducing the risk of selected

snooping. These snooping variants are not present.

4. Spurious Correlations occur when a learning model makes false associations that correlate

with their classification problem [4]. Explanation techniques were applied to all exper-

iments to evaluate the reasoning behind each classifier and to ensure that performance

was not inflated. This pitfall is not present.

5. Biassed Parameter Selection is an exceptional case of data snooping which occurs when

final parameters of a model are indirectly dependent on its testing dataset [4]. This issue

was not present; cross-validation for hyperparameter selection was utilised in experiment

2.2, and all prior hyperparameters for experiments were chosen in line with other research.

6. Inappropriate Baselines occur when a model is insufficiently evaluated in comparison

to a variety of other models. This issue was somewhat mitigated by the presence

52

of four different experiments, with different levels of complexity. Non-machine learning

approaches were not considered, which is a present aspect of this pitfall in this research

[4].

7. Inappropriate Performance Measures occur when a lack of suitable performance measures

are considered for a particular application scenario [4]. Appropriate performance measures

were utilised, such as F1 score for considering class imbalance. Explainability was also

utilised for classifier evaluation. This issue is not present.

8. Base Rate Fallacy occurs when results are misinterpreted due to class imbalance, e.g. if

the negative class is predominant [4]. Despite class imbalance, this issue was mitigated

by the use of precision, recall and F1 metrics when applicable.

9. Lab-Only Evaluation occurs when a machine learning model is not evaluated in a practical

setting (i.e., it is evaluated only in a ‘closed-world setting’) [4]. This pitfall is present

but somewhat mitigated. All classifiers were not evaluated in a practical setting, but

the use of ’novel attack splits’ were somewhat effective at simulating novel attacks on an

anomaly detector.

10. Inappropriate Threat Models do not properly consider the hostility of a production envi-

ronment, such as the influence of adversaries on real world learning-based systems through

adversarial preprocessing, poisoning, and evasion[4]. Poisoning and other adversarial

methods were not considered in this research; this pitfall is present.

53

Chapter 6

Legal, Social, Ethical &

Professional Issues

This chapter details the impact and implications of this project on legal, ethical, social and pro-

fessional issues, as well as the adherence of this project and researcher to the British Computing

Society’s Code of Conduct.

6.1 Legal Issues

The machine learning models in this research were trained on the CICIDS2017 and ‘improved’

CICIDS2017 datasets by Sharafaldin, et al. [32] and Engelen, et al. [7]. These are publicly

available datasets created using the traffic of a research-setting network, ensuring that no

individual’s private information has been revealed.

In addition, any third-party ideas or libraries utilised in the implementation of PyPABLO

have been explicitly attributed in both this report and the source code of PyPABLO. Any

usage of third-party code for this project has strictly adhered to their licensing and attribution

requirements for academic projects.

6.2 Ethical and Social Issues

This project details multiple network penetration techniques which may be used for malicious

purposes, such as targeting specific groups or organisations, causing legal, ethical, social or

financial issues in society. In this research, the motive for understanding these attacks is to

54

craft more effective learning-based network intrusion detection systems.

One potential cause for ethical or legal concern is that an attacker could attempt to utilise

learning-based detection research for their own malicious purposes. For instance, a creative

attacker could simulate potential attacks and utilise learning-based models like PyPABLO to

evaluate if their attacks will be detected by the model. This is an understandable concern

which must be taken into account when undertaking intrusion detection research; nevertheless,

this research must be done so that networks can be defended more successfully against existing

attackers.

Although all machine learning-based models may contain biases or incorrect associations

due to its creators or its training data, great care has been taken by Sharafaldin, et al. [32, 33],

Engelen, et al. [7], and this researcher to eliminate any spurious correlations or identifying data

in the datasets used for PyPABLO, thus mitigating the risk of specific groups or organisations

being unfairly labelled or profiled as malicious by PyPABLO.

6.3 Professional Issues

This dissertation makes no claims to being production-ready as an intrusion detection system,

and it is not recommended that any companies or organisations utilise PyPABLO in its current

state. It is unlikely that the publication of this code in an academic setting will cause secu-

rity issues for any company currently using a learning-based anomaly detection or intrusion

detection system.

6.4 British Computing Society Code of Conduct

This project has adhered to the British Computing Society Code of Conduct [34] at all times.

Particular attention was paid to standards 2a-e, which relate to professional integrity and a

truthful representation of this researcher’s competence, by explicitly citing any third-party code

or inspiration that had any impact on this project. As per standards 2b and 3e, the progress

and competence of this researcher was truthfully related to all relevant parties at all times.

In addition, the motivation for the project–to improve the usefulness and commercial viabil-

ity of learning-based intrusion detection systems–is complementary to standards 1a and 1d of

the Code of Conduct, which state “You shall have due regard for public health, privacy, security

and wellbeing of others and the environment. . . [and] promote equal access to the benefits of

IT and seek to promote the inclusion of all sectors in society wherever opportunities arise.”

55

Chapter 7

Conclusion & Future Work

Ultimately, the four experiments in this research are a small introduction into the complex and

constantly-evolving domain of intrusion detection. The PABLO methodology was not successful

at detecting novel attacks, nor was it more successful than other approaches[7] that did not

attempt to optimise for novel attacks. Nevertheless, the use of locally-explainable SHAP force

plots was effective for better understanding of particular observations. Therefore, three main

conclusions can be made:

1. SHAP plots act as an elegant and useful method for producing explainable results from

a particular model observation.

2. SHAP visualisations can contribute to narrowing the ’semantic gap’ when models have

the ’correct’ reasoning behind an observation.

3. Optimising for known attacks is not a viable methodology for attempting to detect novel

attacks.

As long as there are adversaries, the domain of intrusion detection will never be definitively

finished. The following list describes some potential areas for future research:

• Efficient PySpark and SHAP compatibility. The multi-core SHAP-PySpark approach

discussed in this research could be modified for compatibility with SHAP visualisations.

This could result in visualisations that are more efficient, and thus more viable for real-

time intrusion detectors. This area is particularly intriguing for creating commercial

learning-based anomaly detectors.

• Novel attack detection. This research was unsuccessful at detecting novel attacks. More

56

research should specifically be aimed at determining quantifiable differences between ma-

licious and benign port scanning and brute forcing attacks, due to the subtlety and

unobtrusiveness of these attacks.

• Optimisation of the ’improved’ CICIDS2017 dataset[7]. As Engelen, et al. note them-

selves, the ’improved’ CICIDS2017 dataset still suffers from some pitfalls, notably label

inaccuracy [7]. Nevertheless, the dataset is still quite useful, not least due to its size and

scope. Further improvements and eradication of dataset pitfalls should be explored to

make this dataset even more useful.

• Exploration of the PABLO methodology on other classifiers. The scope of this research

was limited to evaluation of Random Forest Classifiers. The validity of the PABLO

methodology should be tested on higher-performing and less-explainable models. This

could determine whether optimisation for known attacks could improve the performance

of more high-performance classifiers, or if real-time explainability via SHAP visualisations

is not possible for less-explainable classifiers.

57

References

[1] ahlashkari. CICFlowMeter ReadMe.txt. GitHub repository, 2021. Accessed: 2024-04-07.

[2] Ahmed Ahmim, Leandros Maglaras, Mohamed Amine Ferrag, Makhlouf Derdour, and

Helge Janicke. A novel hierarchical intrusion detection system based on decision tree and

rules-based models. In 2019 15th International Conference on Distributed Computing in

Sensor Systems (DCOSS), pages 228 – 233. IEEE, 2019.

[3] Qasem Abu Al-Haija, Eyad Saleh, and Mohammad Alnabhan. Detecting port scan attacks

using logistic regression. In 2021 4th International Symposium on Advanced Electrical and

Communication Technologies (ISAECT), pages 1–5. IEEE, 2021.

[4] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi,

Christian Wressnegger, Lorenzo Cavallarok, and Konrad Rieck. Dos and don’ts of machine

learning in computer security. In 31st Usenix Security Symposium. Usenix, 2022.

[5] CrowdStrike. 2023 global threat report, 2023.

[6] Sepideh Ebrahimi and P. Patel. Scaling shap calculations with pyspark and pandas udf,

2022.

[7] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion detection

dataset: the cicids2017 case study. In 2021 IEEE Symposium on Security and Privacy

Workshops (SPW), pages 7–12. IEEE, 2021.

[8] Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyiannis, and Helge Janicke.

Deep learning for cyber security intrusion detection: Approaches, datasets, and compara-

tive study. Journal of Information Security and Applications, 50, 2020.

[9] Gil Fidel, Ron Bitton, and Asaf Shabtai. When explainability meets adversarial learn-

ing: Detecting adversarial examples using shap signatures. In 2020 International Joint

Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

58

[10] Bimal Ghimire and Danda B. Rawat. Recent advances on federated learning for cyber-

security and cybersecurity for federated learning for internet of things. IEEE Internet of

Things Journal, 9(11):8229 – 8249, 2022.

[11] Lukas-Valentin Herm, Kai Heinrich, Jonas Wanner, and Christian Janiesch. Stop ordering

machine learning algorithms by their explainability! a user-centered investigation of perfor-

mance and explainability. International Journal of Information Management, 69:102538,

2023.

[12] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on

Document Analysis and Recognition, volume 2. IEEE, 1995.

[13] Rui-Fong Hong, Shih-Cheng Horng, and Shieh-Shing Lin. Machine learning in cyber se-

curity analytics using nsl-kdd dataset. In 2021 International Conference on Technologies

and Applications of Artificial Intelligence (TAAI), pages 260 – 265. IEEE, 2021.

[14] Zakaria Abou El Houda, Bouziane Brik, and Sidi-Mohammed Senouci. A novel iot-based

explainable deep learning framework for intrusion detection systems. IEEE Internet of

Things Magazine, 5(2):20–23, June 2022.

[15] IBM. What is an intrusion detection system (ids)? — ibm, 2023.

[16] Marwa Keshk, Nickolaos Koroniotis, N. Pham, N. Moustafa, B. Turnbull, and A. Y.

Zomaya. An explainable deep learning-enabled intrusion detection framework in iot net-

works. Information Sciences, 639:119000, 2023.

[17] lanjelot. patator. GitHub repository, 2012. Accessed: 2023-12-10.

[18] Thi-Thu-Huong Le, Haeyoung Kim, Hyoeun Kang, and Howon Kim. Classification and

explanation for intrusion detection system based on ensemble trees and shap method.

Sensors, 22(3), 2022,.

[19] Cynthia Bailey Lee, Chris Roedel, and Elena Silenok. Detection and characterization of

port scan attacks. University of California, Department of Computer Science and Engi-

neering, 2003.

[20] Scott M. Lundberg. An introduction to explainable ai with shapley values — shap latest

documentation, 2023.

[21] Scott M. Lundberg. shap.plots.force, 2023.

59

[22] Carlos Guestrin Marco Tulio Ribeiro, Sameer Singh. ’why should i trust you?’: Explaining

the predictions of any classifier. In KDD ’16: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1135–1144.

KDD, 2016.

[23] We Are Social & Meltwater. Digital 2024 global overview report, 2024.

[24] Muhammad Nadeem, Ali Arshad, Saman Riaz, Shahab S. Band, and Amir Mosavi. In-

tercept the cloud network from brute force and ddos attacks via intrusion detection and

prevention system. IEEE Access, 9:152300–152309, 2021.

[25] Maryam M. Najafabadi, Taghi M. Khoshgoftaar, Clifford Kemp, Naeem Seliya, and

Richard Zuech. Machine learning for detecting brute force attacks at the network level. In

2014 IEEE International Conference on Bioinformatics and Bioengineering, pages 379–

385. IEEE, 2014.

[26] Ayodeji Oseni, Nour Moustafa, Gideon Creech, Nasrin Sohrabi, Andrew Strelzoff, Za-

hir Tari, and Igor Linkov. An explainable deep learning framework for resilient intrusion

detection in iot-enabled transportation networks. IEEE Transactions on Intelligent Trans-

portation Systems, 24(1):1000 – 1014, 2023.

[27] Philipp Probst, Marvin N. Wright, and Anne-Laure Boulesteix. Hyperparameters and

tuning strategies for random forest. Wiley Interdisciplinary Reviews: data mining and

knowledge discovery, 9(3):e1301, 2019.

[28] Samarjeet Borah Ranjit Panigrahi. A detailed analysis of cicids2017 dataset for designing

intrusion detection systems. International Journal of Engineering & Technology, 7:479 –

482, 2018.

[29] Maŕıa Rodŕıguez, Álvaro Alesanco, Lorena Mehavilla, and José Garćıa. Evaluation of

machine learning techniques for traffic flow-based intrusion detection. Sensors, 22(23),

2022.

[30] Su-In Lee Scott M. Lundberg. A unified approach to interpreting model predictions. In

Proceedings of the 31st International Conference on Neural Information Processing Sys-

tems. NIPS, 2017.

[31] Lloyd Stowell Shapley. A value for n-person games, volume 2 of Annals of Mathematics

Studies, chapter 17, pages 307–317. Princeton University Press, 1953.

60

[32] Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, and Ali A. Ghorbani.

Towards a reliable intrusion detection benchmark dataset. Journal of Software Networking,

pages 177–200, 2017.

[33] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a

new intrusion detection dataset and intrusion traffic characterization. In Proc. of the 4th

International Conference on Information Systems Security and Privacy, pages 108 – 116.

ICISSP, 2018.

[34] British Computing Society. British computing society code of conduct, 2021.

[35] Robin Sommer and Vern Paxson. Outside the closed world: On using machine learning

for network intrusion detection. In 2010 IEEE Symposium on Security and Privacy, pages

305–316. IEEE, 2010.

[36] Apache Spark. Paramgridbuilder – pyspark, 2024. version 3.1.3.

[37] Apache Spark. Randomforestclassifier – pyspark, 2024. version 3.1.3.

[38] Maonan Wang, Kangfeng Zheng, Yanqing Yang, and Xiujuan Wang. An explainable

machine learning framework for intrusion detection systems. IEEE Access, 8:73127 –

73141, 2020.

[39] Yun Wang, Pan Wang, ZiXuan Wang, and Mengting Cao. An explainable intrusion de-

tection system. In 2021 IEEE 23rd Int Conf on High Performance Computing & Commu-

nications, pages 1657 – 1662. IEEE, 2021.

61

	Introduction
	Background
	Trends and Pitfalls of Machine Learning-based Network Intrusion Detection Systems
	What is a Network Intrusion Detection System (NIDS)?
	"Outside the Closed World" and Semantic Gap
	Dos and Don’ts of Machine Learning
	CICIDS2017 Dataset
	Random Forest
	Chosen Attacks for Detection

	Evaluating Models via Shapley Value Explainability
	Local Explainability
	SHAP – A Unified Approach to Interpreting Model Predictions
	LIME and Shapley Values
	An Explainable Machine Learning Framework for Intrusion Detection Systems (2020)
	An Explainable Intrusion Detection System (2021)
	IOT Classification and Explanation (2022, 2023)

	Design & Specification
	Baseline Experiments
	Baseline Experiment - Original CICIDS2017 Dataset
	Baseline Experiment - ‘Improved’ CICIDS2017 Dataset

	Custom Attack Split Experiments
	Novel Attack Detection with Engelen Hyperparameters
	Novel Attack Detection with Cross-Validated Hyperparameters

	Implementation
	Experiment Setup
	Generalised Experiment Layout
	Experiment 1.1 – ‘Baseline Experiment - Original CICIDS2017 Dataset’
	Experiment 1.2 – ‘Baseline Experiment - ‘Improved’ CICIDS2017 Dataset’
	Experiment 2.1 – ‘Engelen Experiment with Custom Attack Split’
	Experiment 2.2 – ‘Optimised Experiment with Custom Attack Split’

	Package Implementation
	preprocess_cic.py
	split_data.py
	get_metrics.py
	create_baseline_model.py
	create_pypablo_model.py
	prove_shap_pyspark_compatibility.py

	Notable Challenges and Aspects
	Stored Model Error
	Multi-Core SHAP Value Generation

	Results & Evaluation
	Experiment Settings
	Baseline Experiments
	Novel Port Scan and Brute Force Attack Detection Experiments
	Overview of Results
	Exp. 1.1 - Results and Prediction Behaviour
	Exp. 1.2 - Engelen, et al. Results Reproducibility
	Exp 2.1 - Engelen Practical Viability
	Exp 2.2 - PyPABLO Results and Correlations
	Contribution of SHAP Plots to Model Explainability
	Potential Research Pitfalls

	Legal, Social, Ethical & Professional Issues
	Legal Issues
	Ethical and Social Issues
	Professional Issues
	British Computing Society Code of Conduct

	Conclusion & Future Work
	Bibliography

